
Modula-3 Systems Journal • Issue 3 • Fall 1997

2

 threads – fall

1997

Threads
The Modula-3 Systems Journal

We are pleased to bring you the third issue of

Threads,
The Modula-3 Systems Journal

. By publishing

Threads

we hope to establish a forum for discussion about
Modula-3 and about what various industrial and aca-
demic organizations are doing with Modula-3. The
articles are intended to be accessible to both cur-
rently active and potential Modula-3 users. We hope
to invite those who now use other programming lan-
guages give Modula-3 a try, too.
We welcome your ideas and contributions in shaping
the future of

Threads

. We imagine that

Threads

 will
change with your input over the next few issues.
Please drop us a note at

threads@cmass

.com. You can
also view

Threads

, on-line at:

http://www.cmass.com/threads

.

What is Modula-3?

Modula-3 is a simple and modular programming lan-
guage, providing facilities for exception handling,
concurrency, object-oriented programming, auto-
matic garbage collection, and systems programming
without involving the complexities forced by other
languages of its class. Modula-3 is both a practical
implementation language for large software projects
and an excellent teaching language. A free imple-
mentation of Modula-3 is available from Digital Sys-
tems Research Center. For more information visit the

Modula-3 home page

 at:

http://www.research.digital.com/SRC/modula-3/html/

Introductory information about Modula-3 is also
available from the Modula-3 Web Resource

 at:
http://www.m3.org

Reactor

, a commercial, industrial-strength distributed
application development environment based on
Modula-3, is available from Critical Mass, Inc. For
more information, send e-mail to

info@cmass.com

 or
visit

http://www.cmass.com/reactor

Issue 3

Table of Contents

Feature Article..3

Critical Mass JVM: Modula-3 Befriends Java

Farshad Nayeri and Blair MacIntyre

JVM, Critical Mass's implementation of the Java Vir-
tual Machine, is written entirely in Modula-3. In this
article, Farshad Nayeri and Blair MacIntyre describe
how they used JVM to build an industrial, Java-exten-
sible serial port controller in Modula-3.

Advanced Topics..7

Low-Level Systems Programming with Modula-3

Marc E. Fiuczynski, Wilson C. Hsieh, Emin Gün Sirer,
Przemyslaw Pardyak, and Brian N. Bershad

The SPIN group at the University of Washington has
been using Modula-3 since 1995 as both the kernel
and extension language for the SPIN operating sys-
tem. In this article, they describe the set of additions
they have made to extend Modula-3's support for
low-level systems programming.

Continuing Thread .. 11

An Object-Oriented Implementation
of Unification Closure

Allan Heydon

In this third article in a series about Juno-2, Allan
Heydon describes the design of three object types
used in the Juno-2 constraint solver to illustrate the
use of objects, subclassing, method overriding, and
partial revelation in Modula-3.

Modula-3 in Academia ... 14

Aachen University of Technology, Germany

Peter Klein

Aachen University of Technology, in Aachen, Ger-
many has been using Modula-3 successfully for a
number of academic and research projects since
1993. Peter Klein, a member of the CS Department III,
reports on some of their experiences.

Copyright © 1997 Critical Mass, Inc. All Rights Reserved.
JVM, Critical Mass, CM3 and Reactor are trademarks of Critical
Mass, Inc.

Threads, The Modula-3 Systems Journal is a publication of
Critical Mass, Inc. For more information, contact:
Critical Mass, Inc., 225R Concord Ave., Cambridge, MA 02138
USA, tel. +1 617 354 6277. email: threads@cmass.com.

thr
ead
s

fall

1997

 – threads

3

Feature Article

Critical Mass JVM: Modula-3 Befriends Java

Farshad Nayeri, Critical Mass, Inc.
Blair MacIntyre, Columbia University

The success of Java has popularized many of the con-
cepts that Modula-3 has been promoting for years,
particularly the combination of garbage collection,
exception handling, objects, and threads. Given the
similarities between the two languages, and the
strength of Modula-3 as a systems programming lan-
guage, it is possible to exploit this common run-time
infrastructure and build a Java virtual machine (Jav-
aVM) implementation in Modula-3. Such an imple-
mentation will be better-structured than the
equivalent C-based implementation since much of
the hardest work, such as multi-threaded garbage col-
lection, has already been done.
This is exactly how

Critical Mass JVM

 was conceived.
Adding to the impressive list of systems built in Mod-
ula-3, such as operating systems, network object sys-
tems, windowing systems, compilers, internet
distribution and commerce systems, we can now
point to Critical Mass's implementation of the Jav-
aVM as another example of the power of Modula-3
for building systems that work.

What is Critical Mass JVM?

JVM is a clean-room implementation of the Java Vir-
tual Machine: it was based entirely on the JavaVM
specification and other publicly available informa-
tion, not on existing JavaVM implementations. The
Critical Mass JVM is class-level compatible with Sun's
JavaVM.
What's unique about JVM is that it's written entirely
in Modula-3, and as such it carries many of the bene-
fits of Modula-3's mature, well-designed infrastruc-
ture. In JVM, a single run-time system supports both
Java and Modula-3, providing an unparalleled level of
integration between the two languages.
Like most other Modula-3 packages, JVM is imple-
mented as a “component” (or in old-fashioned terms,
as a reusable library.) Therefore, you can easily inte-
grate JVM within new or existing applications writ-
ten in any language, including Modula-3, C, or C++.
In addition, JVM is designed so that it can be easily
reconfigured and extended. The internal interfaces to
JVM are available to the integrator, allowing his
application to be integrated more tightly with JVM.
JVM makes for a great migration path to Java, as well
as a nice testbed for extending, enhancing, and
researching the JavaVM. If you like both Java and
Modula-3, then JVM is a great way of mixing them
together!

Java

a la

 Modula-3

Java and Modula-3 are sufficiently similar that it
makes sense for them to share a common runtime,
instead of pushing for a strictly “layered” architec-
ture. You can imagine that the same runtime might
support both Java and Modula-3 programs using the
same garbage collector, the same threads, and the
same exception handling system. The trick is to rec-
oncile the differences in the runtime support so that
both sides can use this shared runtime. (This turns
out to be easier to imagine than to implement--the
devil is in the details.)
Integration of the runtime systems is exactly how
Critical Mass JVM was built. In the process of build-
ing JVM, portions of the Critical Mass Modula-3 runt-
ime were redesigned to add support for some useful
extensions, such as mapping runtime errors into
exceptions, unicode characters, and dynamic loading.
These features were used in turn to implement the
JVM. This article won’t go into the Modula-3 runtime
extensions; they are likely to be the subject of a future

Threads

 article.

The resulting system is quite useful for building
large, intricate systems that require tight integration
with Java. Indeed, Critical Mass JVM uses an identical
layout for the fields of its objects as Critical Mass
Modula-3, allowing you to assign values to fields of
Java objects from your Modula-3 code. That is, given a
Java object, it is possible to write a Modula-3 object
definition that allows you to access the fields of the
Java object

directly

 from Modula-3. Methods, on the
other hand, are not mapped between languages auto-
matically, because the object models of Java and Mod-
ula-3 are sufficiently different that such a mapping
either would have to unify both object models, or it
would have to support a subset of each language. Nei-
ther one of these solutions seem useful. However, you
can bind Modula-3 procedures as native Java methods
via calls to the JVM runtime, allowing Modula-3 code
to be called directly from Java. Conversely, Java meth-
ods can be called from Modula-3 by name.

JVM Example:
Extending JVM with serial port access

As an example, we now show how JVM can be
extended in Modula-3 to support serial port access
from Java. For this we will use the portable Modula-3

SerialPort

 interface, which is distributed as part of the
Reactor system:

101001
101001
001001
1100

Java Bytecodes
(.class)

Java Sources
(.java)

St
an

dar
d ja

va
c

public class foo
{
 public static
 main ()
 {

System.println("J
 }

Nat
ive

 In
vo

ca
tio

n

 A
PI

Nat
ive

Clas
se

s &
 M

et
hod

s

JV
M

 C
las

s L
oa

der

JVM
Run-time
LibraryM

od
ul

a-
3

pro
gra

m

JVM, Critical Mass’s
implementation of the
Java Virtual Machine, is
written entirely in Mod-
ula-3.

In this article, Farshad
Nayeri and Blair MacIn-
tyre describe how they
used JVM to build a
Java-extensible serial
port controller in Mod-
ula-3.

Farshad Nayeri is the
Director of Product
Development at Critical
Mass, Inc.

Blair MacIntyre is a
graduate student at
Columbia University.

4

 threads – fall

1997

INTERFACE SerialPort;
IMPORT OSError, Pathname, Terminal;

SerialPort.T

 represents a serial communications device.
It is a subtype of

File.T

 that can be read or written. Var-
ious configuration details of the underlying device,
such as its baud rate and parity, can be read or writ-
ten.

TYPE
T <: Public;
Public = Terminal.T OBJECT METHODS

get_config (): Config
RAISES {OSError.E};

set_config (READONLY config: Config)
RAISES {OSError.E};

END;

Given an open serial port

s

,

s.get_config()

 returns the
current configuration of the underlying device.

s.set_config(cfg)

 configures the underlying device to
correspond to

cfg

.

TYPE
Config = RECORD

baud_rate : BaudRate;
data_bits : DataBits;
stop_bits : StopBits;
parity : Parity;
DTR_mode : DTR;
RTS_mode : RTS;

END;

TYPE
BaudRate = {BR75, BR110, BR300, BR600, BR1200,

BR2400, BR4800, BR9600,
BR14400, BR19200, BR38400,
BR56000, BR128000, BR256000};

DataBits = {DB8, DB7, DB6, DB5};
StopBits = {SB1, SB15, SB2};
Parity = {None, Odd, Even, Mark, Space};
DTR = {Disabled, Enabled, Handshake};
RTS = {Disabled, Enabled, Handshake,

Toggle};

CONST
InitialConfig = Config {

BaudRate.BR9600, DataBits.DB8,
StopBits.SB1, Parity.None,
DTR.Disabled, RTS.Disabled

};

PROCEDURE Open (p: Pathname.T): T
RAISES {OSError.E};

This procedure opens the serial device named

p

 and
returns a

SerialPort.T

 that can read and write the
device. The initial configuration of the result is set to

InitialConfig

.

END SerialPort.

Note that this Modula-3 serial port interface itself has
nothing to do with Java; it provides portable serial
port access to Modula-3 programs on Windows and
Unix. A

SerialPort.T

 is a subtype of

File.T

; this is a nice
property because you can mix and match serial ports
with other Modula-3 libraries. For example, you can
create a standard reader or writer for a serial port.

Interfacing to Java via JVM

Next, we designed a Java package that provides func-
tionality similar to the Modula-3

SerialPort

 interface in
Java. Despite the similarities, note the number of dif-
ferences between the structure of these two “inter-
faces”:

package cmass;

// SerialPort is a JVM native file descriptor
// that maps to a serial port of the system
// where JVM runs

public class SerialPort {

/* File Descriptor - handle to the open file */
private java.lang.io.FileDescriptor fd;

/* Opens the specified serial port. */
private native void open(String name)

throws java.io.IOException;

/* Closes the serial port. */
private native void close()

throws java.io.IOException;

/**
* Creates a SerialPort file with the specified system
* dependent file name. Throws FileNotFoundException
* if the file is not found.
*/

public SerialPort(String name) throws java.io.FileNotFoun-
dException {

try {
this.fd = new FileDescriptor();
this.open(name);

} catch (IOException e) {
throw new java.io.

FileNotFoundException(name);
}

}

/* Constants for configuring the serial port. */
/* The baud rate. */

public static final short BR75 = 0;
public static final short BR110 = 1;
public static final short BR300 = 2;
public static final short BR600 = 3;
public static final short BR1200 = 4;
public static final short BR2400 = 5;
public static final short BR4800 = 6;
public static final short BR9600 = 7;
public static final short BR14400 = 8;
public static final short BR19200 = 9;
public static final short BR38400 = 10;
public static final short BR56000 = 11;
public static final short BR128000 = 12;
public static final short BR256000 = 13;

/* the number of data bits */
public static final short DB8 = 0;
public static final short DB7 = 1;
public static final short DB6 = 2;
public static final short DB5 = 3;

/* the number of stop bits */
public static final short SB1 = 0;
public static final short SB15 = 1;
public static final short SB2 = 2;

/* the parity */
public static final short PARITY_NONE = 0;
public static final short PARITY_EVEN = 1;

fall

1997

 – threads

5

public static final short PARTIY_ODD = 2;
public static final short PARITY_MARK = 3;
public static final short PARITY_SPACE = 4;

/* DTR line control */
public static final short DTR_DISABLED = 0;
public static final short DTR_ENABLED = 1;
public static final short DTR_HANDSHAKE = 2;

/* RTS line control */
public static final short RTS_DISABLED = 0;
public static final short RTS_ENABELD = 1;
public static final short RTS_HANDSHAKE = 2;
public static final short RTS_TOGGLE = 3;

/**
* Sets the configuration of the serial port. The
* array parameter contains the following elements:
* [baud_rate, data_bits, stop_bits, parity,
* DTR_mode, RTS_mode, timeout readInterval,
* timeout readMultiplier, timeout readConstant].
*/

public native void setConfig(short[] cfg);

/*
* Gets the current configuration of the serial port.
* The array parameter will contain the following
* elements: [baud_rate, data_bits, stop_bits,
* parity, DTR_mode, RTS_mode,
* timeout readInterval, timeout readMultiplier,
* timeout readConstant].
*/

public native void getConfig(short[] cfg);

/**
* Returns the opaque file descriptor object
* associated with this stream.
*/

public final FileDescriptor getFD()
throws IOException {

if (this.fd == null) throw new IOException();
return this.fd;

}

/* Cleans up if the user forgets to close it. */
protected synchronized void finalize()

throws IOException {
if (this.fd != null) this.close();

}

} // class SerialPort

This class simply exposes the serial port features to
Java. You can compile this file with a standard Java
compiler (such as Sun’s

javac

.) Of course, the resulting
class file expects the Java runtime to include native
implementations for the methods defined in this
class. If you were to run this with an ordinary JavaVM
without the serial port extensions, it would not work.
So, the next step is to extend the JVM to include sup-
port for objects of this class.
Note the private

"fd"

 field of this object, which is of
type

FileDescriptor

. Ideally, we would like to do the Java
equivalent of subtyping

File.T

, namely having our

Seri-
alPort

 class extend

java.lang.io.FileDescriptor

, but this is
not possible because the Java Language Specification
declares

FileDescriptor

 to be

final

 (meaning that this
class cannot be extended.) Even if JVM allowed

FileDe-
scriptor

 to be extended,

javac

, the Java source-to-byte-
code compiler would not allow the code for

cmass.SerialPort

 to compile. So, we end up with the

more cumbersome (and less efficient) approach of
including a

FileDescriptor

 field in our object. (There is
precedence for this approach in the Java libraries that
implement TCP/IP sockets, which should also be sub-
types of

FileDescriptor

.) The contrast of the two serial
port “interfaces” also illustrates some useful con-
structs missing from Java, e.g., an enumeration type.

Implementing native Java methods in Modula-3

To implement the native methods, we create a

JVM_SerialPort

 module in Modula-3:

INTERFACE JVM_SerialPort;
IMPORT java, JVM_File;
CONST ClassName = "cmass.SerialPort";
TYPE

T = java.object BRANDED ClassName OBJECT
fd: JVM_File.FileDescriptor := NIL;

END;
END JVM_SerialPort.

JVM_SerialPort.T

 is a mirror image of

cmass.SerialPort

.
Note how its

fd

 field’s type is the mirror image of

java.lang.io

.

FileDescriptor

,

JVM_File.FileDescriptor

.
Finally, we implement the

JVM_SerialPort

 module.

MODULE JVM_SerialPort;
IMPORT SerialPort, JVM, JVM_Interp, java,

JVM_Error, AtomList, OSError, JVM_String,
JVM_ArrayClass;

First, create an array of method descriptions. For each
method, declare the class name (

"cmass.SerialPort"

), the
method name, its Java type, and the name of the Mod-
ula-3 procedure implementing it. The somewhat
cryptic Java types are a legacy of Sun’s JavaVM imple-
mentation, and are documented in the Java Virtual
Machine Specification. (We leave as an exercise to the
reader to decrypt them! Hint: see the method signa-
tures of the

cmass.SerialPort

 class.)

CONST NativeMethods = ARRAY OF JVM.MDesc {
JVM.MDesc { ClassName, "open",

"(Ljava.lang.String;)V", Open},
JVM.MDesc { ClassName, "setConfig",

"([S)V", SetConfig},
JVM.MDesc { ClassName, "getConfig",

"([S)V", GetConfig},
JVM.MDesc { ClassName, "close", "()V",

Close}
};

The next procedure,

Open

 implements the open call,
which is declared to take a pathname as its argument.
To access its parameters,

Open

 pops them off the JVM
stack. Here, there is only one argument to be popped
off, plus the implicit

self

 argument. We take advan-
tage of Modula-3’s automatic narrow by declaring

self

to be of type

T

, thereby allowing us to refer to

self.fd

.

PROCEDURE Open (VAR env: JVM.Env;
 m: JVM.Method)

RAISES {java.failure} =
VAR

path : java.string := JVM_Interp.PopObj (env);
self : T := JVM_Interp.PopObj (env);

6

 threads – fall

1997

name := JVM_String.ToText (path);
BEGIN

TRY
self.fd.file := SerialPort.Open (name);

EXCEPT OSError.E (err) => IOError (env, err)
END;

END Open;

(For simplicity,

Open

 doesn’t check the validity of its
arguments. We skip over the implementation of

Close

,
since it is similar to

Open

.)
You may wonder what happens if you want to access

fd

 concurrently from Modula-3 and Java. The answer
is that, just as if you were building two components
in pure Java or Modula-3, the two sides will have to
synchronize with each other. In particular, you can
use the usual per-object locks available in Java. To
access the object from Modula-3, you will have to
lock the object via the call

JVM_Thread.Lock

.
Next, consider the native implementation of the

set-
Config

 method, which takes a configuration array.
Note how we can mix and match Java data structures
with Modula-3 ones. (We skip

getConfig

’s implementa-
tion, since it is similar to

setConfig

.)

CONST ConfigArraySize = 9;

PROCEDURE SetConfig (VAR env: JVM.Env;
<*UNUSED*> m: JVM.Method)
RAISES {java.failure} =

VAR
x : java.short_array := JVM_Interp.PopObj (env);
self: T := JVM_Interp.PopObj (env);
cfg : SerialPort.Config;

BEGIN
IF NUMBER(x.elts^) # ConfigArraySize THEN

ArgError(env, "illegal array size");
END;
cfg.baud_rate := VAL(x.elts[0],

SerialPort.BaudRate);
cfg.data_bits := VAL(x.elts[1],

SerialPort.DataBits);
cfg.stop_bits := VAL(x.elts[2],

SerialPort.StopBits);
cfg.parity := VAL(x.elts[3],SerialPort.Parity);
cfg.DTR_mode := VAL(x.elts[4],SerialPort.DTR);
cfg.RTS_mode := VAL(x.elts[5],SerialPort.RTS);
cfg.timeouts.readInterval := x.elts[6];
cfg.timeouts.readMultiplier := x.elts[7];
cfg.timeouts.readConstant := x.elts[8];

TRY
TYPECASE self.fd.file OF
| SerialPort.T (port) =>

port.set_config(cfg);
ELSE

ArgError(env, "non-serial port file");
END;

EXCEPT OSError.E (err) => IOError (env, err)
END;

END SetConfig;

The procedure

IOError

 raises a

java.failure

 exception
from Modula-3, passing enough information so that
meaningful backtrace information can be produced
in Java (including Modula-3 line numbers in Java’s
backtraces!) The procedure

ArgError

 is similar to

IOEr-
ror

, except that it raises an exception of a particular
type, namely a standard

IllegalArgument

 exception.

Finally, the main body of the module registers the
native methods using

JVM.RegisterNativeMethods

,
which conveniently takes an array, and the class
name

"cmass.SerialPort"

 is registered to map to

JVM_SerialPort.T

.

BEGIN
JVM.RegisterNativeMethods (NativeMethods);
JVM.RegisterNativeType (ClassName, TYPECODE (T));

END JVM_SerialPort.

As you can see, it is quite simple to extend JVM with
Modula-3 code. The nice part is that in your exten-
sion, you can take full advantage of Modula-3 fea-
tures, such as exceptions, garbage collection and
threads. These features are unavailable inside other
JavaVM implementations; there you drop to ground
zero when you start to write native methods, forego-
ing all access to these features.
Note that, as with Modula-3’s

<*EXTERNAL*>

pragma, it
is the programmer’s responsibility to ensure that the
mapping from Java to Modula-3 is correct. The pro-
grammer is still aided by the strong typing of both
languages. This responsibility is a small price to pay
for the tight degree of integration provided by JVM.

The results

Once we have built the new JVM with serial port sup-
port, we are ready to test it. Extending JVM with
serial port access enables a new class of applications.
Here is an example use of a Java class that allows us to
control an LCD display that is connected to the host
computer via a serial line interface (implemented as
the

SLI

class, which is not described here):

import java.io.*;
import cmass.*;

class app {
public static void main (String argv[]) {

try {
SLI sli = new SLI("/dev/cua1");
PrintStream ps = sli.ps;
ps.print("\fHello\r World!");
ps.flush();
Thread.sleep(1000000);

} catch (InterruptedException e) {
System.err.println("sleep failed");

} catch (java.io.FileNotFoundException n) {
System.err.println("serial port not found");

} catch (java.io.IOException e) {
System.err.println("I/O error");

}
}

}

And here is the result:

Conclusion

JVM, an extensible Java Virtual Machine, is imple-
mented in Modula-3. JVM makes it easy to extend
Java functionality using Modula-3 (or C), and to load
Java classes as part of Modula-3 programs. JVM also
implements the native methods of the core language
packages for Java, so it is easy to interoperate with

fall

1997

 – threads

7

most Java programs. Finally, JVM can be extended
easily to accommodate systems programming needs.
More information about JVM can be found at

http://
www.cmass.com/jvm

.

Advanced Topics

Low-Level Systems Programming
with Modula-3

Marc E. Fiuczynski, University of Washington
Wilson C. Hsieh, University of Utah
Emin Gün Sirer, University of Washington
Przemyslaw Pardyak, University of Washington
Brian N. Bershad, University of Washington

Since 1995 we have used Modula-3 to develop operat-
ing system services for a kernel called SPIN at the
University of Washington [1]. SPIN is an extensible
kernel that allows untrusted applications to extend
system services by dynamically linking in

extensions

[4]. The SPIN kernel provides in-kernel threads, vir-
tual memory, and device management as its core set
of services, and higher-level operating system ser-
vices are implemented by extensions. To date we
have implemented a variety of extensions in Modula-
3, including user-level threads, a TCP/IP protocol
stack, transaction services for databases, a log-struc-
tured file system (LFS), NFS and HTTP servers, a Unix
emulation library that is binary compatible with Dig-
ital UNIX and FreeBSD, and many other services. The
kernel itself is also implemented in Modula-3.
 We have found Modula-3’s type safety, as well as its
data hiding properties, threads, generic interfaces and
object support, to be effective in developing a high-
performance, modular system [5]. While building
SPIN, we have learned that low-level system pro-
gramming requires explicit language constructs to
interact with the outside world. Some examples of
interactions with entities outside the domain of a
Modula-3 program are interfacing with other lan-
guages, manipulation of the underlying hardware,
and interpreting data from devices. Modula-3 greatly
facilitated the rapid construction of SPIN and its
extensions, but there were a few additions and modi-
fications we needed to make to the language and run-
time to support low-level programming.
In this article we describe our changes to support
low-level systems programming, with Modula-3 as
follows:
•

Interfacing with foreign code and devices

. Since our
kernel interfaces with hardware device drivers and
services implemented in C, we improved Modula-
3’s capability to interface with other languages,
and added a run-time feature to enable sharing of
garbage collected data.

•

Implicit exceptions

. We added support to turn
checked run-time errors and other system faults
into language exceptions. This feature is important
in an extensible system like SPIN, as it enables ser-
vices to isolate themselves from errors caused by
other subsystems.

•

Type-safe casting

. We added language support for
type-safe casting. We needed this facility because
operating system services often operate on data
created outside of the language, such as packets

The SPIN group at the
University of Washing-
ton has been using Mod-
ula-3 since 1995 as both
the kernel and extension
language for their exten-
sible operating system. In
this article, they describe
the set of additions they
have made to extend
Modula-3’s support for
low-level systems pro-
gramming.

For more information on
SPIN, visit:

http://www.cs.
washington.edu/
research/projects/

spin/www

8

 threads – fall

1997

coming from the network, disk buffer blocks, and
system call arguments.

The rest of this article addresses each of the above
points.

Interfacing with foreign code and devices

Our kernel relies on low-level platform-specific ser-
vices that we borrow from Digital UNIX and FreeBSD.
These services are implemented in C and highlight
some of the difficulties of interfacing with other lan-
guages and devices. There are three aspects to these
difficulties: argument passing between Modula-3 and
foreign code (including issues related to Modula-3’s
garbage-collected heap), calling procedures across
the language boundary, and the alignment of shared
data. The rest of this section addresses these issues.

Passing data between Modula-3 and foreign code

Passing non-reference arguments between a foreign
language and Modula-3 simply requires the declara-
tion of matching types. Matching up reference types
is complicated, as Modula-3 treats references to data
allocated on the traced (i.e., garbage-collected) and
untraced heaps differently. The traced heap is auto-
matically managed in ways that are not compatible
with sharing of memory between safe and unsafe lan-
guages. For example, the DEC SRC reference imple-
mentation uses a copying garbage collector.
Consequently, if a Modula-3 program passes a traced
reference to C, and C stores the reference in its own
untraced heap, the collector might relocate or collect
the object, leaving C’s reference dangling. Conversely,
if a C program passes an untraced reference to Mod-
ula-3, and Modula-3 treats the reference as traced, the
collector will fail.
To pass reference types from a foreign language (typi-
cally C, although occasionally assembly language) to
Modula-3 we follow one of two strategies on the Mod-
ula-3 side. We either declare the arguments as
untraced references to records, or we declare them as
call-by-reference arguments using Modula-3’s VAR
parameter-passing mode (for which the compiler
generates code that automatically dereferences the
parameter).
Most Modula-3 programs define data structures in
the traced heap, which simplifies interface design
and eliminates storage leaks and dangling pointers.
However, passing a traced reference outside the
domain of a Modula-3 program (such as a foreign lan-
guage or a device) requires that we register the refer-
ent with the collector. Otherwise, the collector may
relocate or prematurely deallocate it. For instance, a
network buffer that is allocated in the traced heap
cannot be passed to a network device, since the
pointer to the buffer that is kept in the device is invis-
ible to the collector and hence will not be updated if
the buffer is relocated. For this reason, we introduced
the notion of a strong reference, which registers an
object allocated from the traced heap with the collec-
tor as temporarily uncollectible and immovable. In

this way, an object can be “strong ref’d” before it is
passed out and “un-strong ref’d” when and if it is safe
to do so.
Finally, we added the CVAR parameter-passing mode to
allow Modula-3 procedures to call C procedures more
efficiently. In C, call-by-reference is implemented by
passing a pointer to the appropriate parameter. Pass-
ing a value of NIL as the address of an argument is
often used to denote a special case by C programs. It is
not possible to preserve such semantics using VAR, the
Modula-3 mechanism for call-by-reference, because
an argument passed as a VAR parameter must be a des-
ignator (and has its address taken automatically).

UNSAFE INTERFACE Ccalls
(* The C declaration for the CallByReference

procedures is void CBR(int *out); *)

<* EXTERNAL "CBR" *> PROCEDURE
CallByReference1(CVAR out: INTEGER);
(* CallByReference1 can be called with NIL

as an argument: CallByReference1(NIL); *)

<* EXTERNAL "CBR" *> PROCEDURE
CallByReference2(out: UNTRACED REF INTEGER);
END Ccalls.

Figure 1: Declaration using the CVAR call-by-reference
mode.

The code fragment in Figure 1 illustrates how CVAR
can be used. CVAR is restricted to EXTERNAL declara-
tions. The CVAR parameter out is similar to a VAR
parameter; it differs in that NIL can be explicitly
passed as the value for out. If NIL is passed to
CallByReference1, the C formal parameter out is bound
to NIL. If an INTEGER designator is passed to
CallByReference1, CVAR is equivalent to VAR, and out is
bound to the address of that designator.
Without CVAR, we would have to declare an external
function as CallByReference2. However, using a REF
INTEGER does not capture the semantics of the parame-
ter-passing mode for out, and would require the caller
to use the unsafe ADDRESS operator. For these reasons,
we decided to add the CVAR parameter mode.

Cross language procedure invocation

Calling out from Modula-3 is facilitated by the exist-
ing EXTERNAL pragma, which allows an interface to
describe a function written in a foreign language
such as C. However, this pragma is legal in both safe
and unsafe interfaces, implying that a safe module
could import a safe interface that provided direct
access to a C function or data structure of arbitrary
type. Since the type of the function or data structure
may in fact be specified by the C implementation,
Modula-3 cannot enforce type safety of safe modules
that use EXTERNAL. Consequently, we modified the
compiler so that the EXTERNAL pragma can only be
used within unsafe interfaces. The programmer is
thus forced to assert safety by wrapping a safe inter-
face around the unsafe one containing uses of EXTER-

fall 1997 – threads 9

NAL.
Calling Modula-3 procedures from foreign languages
is more complex, as the DEC SRC implementation
does not directly support this direction. Rather, the
conventional approach is for the programmer to ini-
tialize procedure variables that are visible to the for-
eign language. We use this technique, but also
modified the front-end of the compiler to generate C
header files for Modula-3 interface files. This way,
procedures exported via a Modula-3 interface can be
called directly from C using “Module dot method”
syntax.

Specifying alignment

The Modula-3 language does not provide facilities for
guiding the compiler’s alignment decisions. How-
ever, alignment is a real concern, especially when
interacting with hardware devices or with code in
another language. For example, a C compiler may
make certain alignment decisions about data struc-
tures, or a memory-mapped device may require a spe-
cific memory layout for a data structure. Therefore
we need the ability to specify alignment for Modula-3
data structures. In order to give the programmer con-
trol over the alignment of data structures, we have
added an ALIGNED FOR construct (analogous to BITS
FOR) to Modula-3. The type ALIGNED n FOR T, where n is
an INTEGER, specifies a subtype of T that has an align-
ment of n bits, subject to the following constraints:
• n must be a multiple of the type’s inherent align-

ment.
• Aligning T to n bits must not require any padding.
The first restriction preserves natural alignment. The
second restriction is a design decision that requires
the programmer to explicitly include extra padding
when necessary. Together, these restrictions mean
that ALIGNED FOR can be used only to boost the align-
ment of a type.

(* The corresponding C declaration:
struct UdpHeaderC {

int sport: 16; int dport: 16;
int len: 16; int check: 16 };

*)

TYPE UdpHeaderM3 = RECORD
sport: BITS 16 FOR [0..16_ffff];
dport: BITS 16 FOR [0..16_ffff];
len : BITS 16 FOR [0..16_ffff];
check: BITS 16 FOR [0..16_ffff];

END;

TYPE UdpHeaderM3C = ALIGNED 32 FOR RECORD
sport: BITS 16 FOR [0..16_ffff];
dport: BITS 16 FOR [0..16_ffff];
len : BITS 16 FOR [0..16_ffff];
check: BITS 16 FOR [0..16_ffff];

END;

Figure 2: Declarations of Modula-3 records using dif-
ferent alignment constraints. Using the ALIGNED FOR
constructor enables the programmer to specify the
alignment requirements of the data structure.

Figure 2 illustrates the alignment problems that can
arise when interacting with C. One might expect (as
we initially did) that a UdpHeaderM3 could be aligned
on any 16-bit boundary. In fact, the DEC SRC M3 com-
piler boosts the alignment of every UdpHeaderM3 to the
natural word size of the architecture for efficiency
(which is 32-bit for x86 and 64-bit for the Alpha). If
the Modula-3 compiler chooses an alignment for
UdpHeaderM3 that is more strict than the alignment
chosen by the C compiler for UdpHeaderC, then an
alignment exception can occur if C code passes a ref-
erence to a UdpHeaderC to Modula-3 code. Similarly, if
the Modula-3 compiler chooses an alignment for
UdpHeaderM3 that is less strict than the alignment cho-
sen by the C compiler for UdpHeaderC, then an align-
ment exception can occur if Modula-3 code passes a
REF UdpHeaderM3 to C code. To avoid these problems,
we use ALIGNED FOR as shown in the declaration of the
UdpHeaderM3C type of Figure 2 above.
In addition to adding ALIGNED FOR, we have turned off
the automatic alignment boosting that occurs in our
M3 compiler. This design decision may seem counter-
intuitive, because the programmer must deal with
alignment when necessary. However, such alignment
issues only arise when dealing with data structures
that contain only sub-word-sized types. A program-
mer who uses such types is already taking perfor-
mance issues into consideration, and dealing with
alignment is not much of an additional burden.

Implicit exceptions
Modula-3 defines the concept of a checked run-time
error as a run-time error that must be detected and
reported. The specification leaves open how such
errors are reflected back to programs, although a
statement on page 12 of the Modula-3 book [3] states
that an implementation may reflect checked run-
time errors as exceptions. Most Modula-3 implemen-
tations halt a program whenever a checked run-time
error occurs. This is a poor way to reflect errors in an
operating system.
The exception model of Modula-3 requires that each
procedure explicitly state what exceptions it can
raise, although a note on page 29 [3] does imply the
existence of implicit exceptions. In SPIN we require that
our Modula-3 implementation reflect all checked
run-time errors back to the offending code as implic-
itly declared exceptions. Such exceptions are raised
by every procedure. Unhandled exceptions are sub-
sumed by our model of implicit exceptions, in that
the “unhandled exception” exception is another
implicit exception, and thus can be caught. If an
implicit exception is not caught, the offending thread
is stopped at its failure point, and the unhandled
exception may be caught by another thread.

IMPORT SpinException;
PROCEDURE NilDeref(pointer: REF INTEGER) =

VAR value : INTEGER; BEGIN
TRY
(* dereference a pointer, which could be NIL *)

value := Pointer^;

10 threads – fall 1997

EXCEPT
| SpinException.Exception(info) =>

IF info.code = SpinException.ExceptionCode.Attempt-
ToDereferenceNIL THEN

(* handle the error *)
...

END;
END;

END NilDeref;

Figure 3: An example use of catching a checked run-
time error as a language exception.

The code fragment in Figure 3 illustrates how
implicit exceptions are used. In the code, the excep-
tion SpinException.Exception represents all of the
implicit exceptions. In this simple example, the pro-
cedure NilDeref dereferences a NIL pointer; our
implicit exception model allows this error to be
caught. Although this example is overly simplified
(since the test for a NIL pointer could be done explic-
itly), it illustrates how implicit exceptions allow pro-
grams to explicitly catch checked run-time errors.
SPIN also reflects other system faults as implicit
exceptions to the offending code. The programmer
may catch arithmetic faults (e.g., divide by zero), vir-
tual memory related faults (e.g., protection faults or
accessing an invalid address), and unaligned accesses
(for processors such as the Alpha). The ability to
catch system faults as exceptions enables the con-
struction of more robust systems by guarding against
errors. In practice, we have found this capability very
useful. For example, TCP services in our HTTP server
continued operating even when unrelated UDP code
on the packet input path erroneously dereferenced
NIL.

Type-safe casting

Operating system code (such as networking, file sys-
tem, and system call code) must often interpret “raw
bytes” as a “real” type. For good performance, this
interpretation should occur without having to copy
the raw bytes to a designator, yet all type-safe lan-
guages lack an efficient and expressive way to cast
data safely. Although most languages provide unsafe
features that enable casting, we found it necessary for
extensibility to write system code using only type-
safe language features. Consequently, we developed a
type-safe cast operator for Modula-3 called VIEW.
VIEW allows a programmer to reinterpret a piece of
memory as a different type. The code in Figure 4
illustrates how we use VIEW to interpret packets in
SPIN [2]. Inside the body of the WITH statement, the
variable ipHeader is a typed alias for the packet’s
header. Both the ByteFilter and ViewFilter procedures
have the same function, but the former is more
obtuse, difficult to maintain, and likely to contain
errors. VIEW enables programmers to write code that
is simpler to understand and that executes more effi-
ciently than using explicit byte manipulations.

IMPORT Ip, Word;
CONST SourceAddr = 16_805f02DE;
(* IP address of www-spin.cs.washington.edu *)
TYPE Packet = ARRAY [0..255] OF Byte;

PROCEDURE ByteFilter(READONLY m: Packet) : BOOLEAN =
(* type-safe, but readable; inefficient on machines

without byte operations *)
BEGIN

RETURN m.packet[9] = Ip.protocol.UDP AND
Word.And (m.packet[0], 16_F) =

Ip.version4 AND
Word.Or(Word.LeftShift(m.packet[15], 24),
Word.Or(Word.LeftShift(m.packet[14], 16),
Word.Or(Word.LeftShift(m.packet[13], 8),
m.packet[12]))) = SourceAddr;

END ByteFilter;

PROCEDURE ViewFilter(READONLY m: Packet) : BOOLEAN =
(* type-safe, readable, and efficient *)

BEGIN
WITH ipHeader = VIEW(m, Ip.T) DO
(* no copying *)

RETURN ipHeader.protocol = Ip.protocol.UDP AND
ipHeader.version = Ip.version4 AND
ipHeader.sourceAddr = SourceAddr;

END;
END ViewFilter;

Figure 4: Implementation of packet filters using byte
operations and VIEW. The filters accept unfragmented
UDP/IP packets with a particular source address. The
WITH operator creates an alias to the ipHeader using a
VIEW expression.

Our casting operator is correct for two reasons. First,
VIEW does not create any illegal representations. Sec-
ond, for any visible type T, a client can allocate its
own instances of T and set T’s fields to any legal value.
Therefore, there can be no harm in allowing a client
to "create" new instances of T via casting instead of
allocation. More precisely, VIEW allows a programmer
to cast a designator (an expression that denotes a
memory location) to another type. We develop a
notion of equivalence between designators of differ-
ent types, such that casting between equivalent des-
ignators is type-safe. We can cast a designator from a
type T1 to another type T2 so long as the following
conditions are met:
• Every bit pattern that represents a legal value in T1

represents a legal value in T2.
• Every bit pattern that represents a legal value in T2

represents a legal value in T1. If the designator is
not writable, this condition can be relaxed.

• The alignment of the designator satisfies the align-
ment required for T2. It may be necessary to check
this condition at run-time in order not to reject all
designators whose alignment may not match.

• The types T1 and T2 must exist in the same register
sets. For example, we disallow casting between
floating point and integer designators, because the
casting would not preserve sharing.

We define two types to be representation-equivalent if
they satisfy the first two conditions, which can be
determined at compile-time. Trivially, any type T is
representation-equivalent to itself. For other pairs of
types, we must compare the sets of legal values for

fall 1997 – threads 11

the types, where legality is defined as follows:
• For a base type, the language defines the set of legal

values.
• For a record or array type, the set of legal values is

the cross-product of the legal values of the types of
the fields.

• For a pointer type (which can be an abstract data
type or an object type), the set of legal values is dis-
tinct from all other pointer types. In other words,
given a pointer type T, only designators of type T
can be cast to T.

Summary
We have used the features described in this article to
do low-level systems programming with Modula-3 in
the context of the SPIN operating system. Our experi-
ence with SPIN indicates that the safety of Modula-3,
combined with our additions to support low-level
systems programming, make the language an ideal
choice for systems programming. Not only does Mod-
ula-3 prevent most common programming errors by
virtue of its type safety, it offers a variety of powerful
tools that allow the programmer to tackle a range of
systems programming tasks.

References
[1] B.N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M. Fiuczyn-
ski, D. Becker, S. Eggers, and C. Chambers. “Extensibility,
Safety and Performance in the SPIN Operating System,” in
Proceedings of the Fifteenth ACM Symposium on Operating Sys-
tems Principles, Copper Mountain, CO, December 1995. http://
www.cs.washington.edu/research/projects/spin/www/
papers/SOSP95/sosp95.ps

[2] M.E. Fiuczynski and B.N. Bershad. “An Extensible Proto-
col Architecture for Application-Specific Networking,” in
Proceedings of the 1996 Winter USENIX Conference, San Diego,
CA, January 1996. http://www.cs.washington.edu/research/
projects/spin/www/papers/Usenix96/extprotarch.ps

[3] G. Nelson, editor. System Programming in Modula-3, Pren-
tice Hall, 1991.

[4] E.G. Sirer, M.E. Fiuczynski, P. Pardyak, and B.N. Bershad.
“Safe Dynamic Linking in an Extensible Operating System,”
in The First Workshop on Compiler Support for Systems Soft-
ware, February 1996. http://www.cs.washington.edu/
research/projects/spin/www/papers/WCS/domain.ps

[5] E.G. Sirer, S. Savage, P. Pardyak, and B.N. Bershad. “Writ-
ing an Operating System in Modula-3,” in The First Workshop
on Compiler Support for Systems Software, February 1996.
http://www.cs.washington.edu/research/projects/spin/
www/papers/WCS/m3os.ps

[6] W.C. Hsieh, M.E. Fiuczynski, C. Garrett, S. Savage, D.
Becker, and B.N. Bershad. “Language Support for Extensible
Systems,” in The First Workshop on Compiler Support for Sys-
tems Software, February 1996. http://www.cs.washing-
ton.edu/research/projects/spin/www/papers/WCS/
language.ps

Continuing Thread
An Object-Oriented Implementation of
Unification Closure

Allan Heydon, Digital Systems Research Center

Introduction

Juno-2 is a constraint-based drawing editor imple-
mented in Modula-3 [1]. It uses a double-view inter-
face: the figure in the graphical view is produced by
running the program in the textual view. You can edit
your figure through either view, and Juno-2 main-
tains the correspondence between them.
The programming language used in Juno-2’s textual
view [2] is based on Dijkstra’s guarded command lan-
guage [3], but with provisions for solving constraints.
Its value space is the smallest set closed under the for-
mation of ordered pairs and containing real numbers,
texts, and the special value NIL. In other words, the
data structures of Juno-2 programs are similar to
those of LISP.
A constraint in Juno-2 is a predicate on program vari-
ables. Solving a constraint is equivalent to finding
values for the variables that make the predicate true.
The inclusion of ordered pairs in the value space
means that the Juno-2 solver must support con-
straints on the structure of values. For example, if v is
a fixed list of elements, the following command can
be used to initialize the local variables a0 and a1 to
the first two elements of v:

VAR a0, a1, tail IN
v = (a0, (a1, tail)) ->

(* code using a0 and a1 goes here *)
END

Ordered pairs have the property that if the pairs (a0,
b0) and (a1, b1) are asserted to be equal, then the
equalities a0 = a1 and b0 = b1 must also hold. (The con-
verse is also true, but there is no need for the con-
straint solver to infer equalities of pairs.) The Juno-2
solver works by maintaining an equivalence relation
on known values and the unknowns being solved for.
When two values are asserted to be equal, their
equivalence classes are merged. The equivalence rela-
tion is said to be unification closed if all equalities of
pairs have been propagated to equalities on their chil-
dren.
Juno-2 uses unification [4] to solve constraints on
pairs. For example, imagine that the variable v in the
above constraint has the following fixed value:

v = (0, (1, (2, (3, NIL))))

By one unification, the constraint on v would engen-
der the following two equivalences:

a0 = 0
(a1, tail) = (1, (2, (3, NIL)))

The latter of these two equivalences would then

This is the third in a
series of articles about
Juno-2, a constraint-
based drawing editor.
The first article described
the implementation of the
Juno-2 user interface,
and the second article
described the design and
implementation of a
reusable software dou-
ble-buffer object.

This article describes the
design of three object
types used in the Juno-2
constraint solver. It illus-
trates the use of objects,
subclassing, method
overriding, and partial
revelation in Modula-3.

Allan Heydon is a mem-
ber of the research staff
at the Digital Systems
Research Center.

12 threads – fall 1997

engender the following equivalences:

a1 = 1
tail = (2, (3, NIL))

Together, these equivalences solve the constraint.
There is an extra wrinkle in the unification process
due to value types. At run-time, each equivalence
class may have a known type. If two equivalence
classes being merged have different known types,
then the constraint solver can immediately report
failure. If only one class has a known type, that type
can be propagated to the other class as a side-effect of
unifying the two values. Another failure case that
must be detected is a cycle in the closure, such as
would be caused by the constraint x = (x, 1).
Juno-2’s constraint solver uses three abstract classes
to propagate equalities and to perform unification:
Equiv.Elt, Egraph.Node, and JunoSolve.Var. An Equiv.Elt rep-
resents an element of an equivalence class; the con-
straint solver uses the Equiv interface to maintain the
equivalence relation on Juno-2 values. The solver
uses instances of Egraph.Node to represent the func-
tional expressions appearing in constraints. Finally,
the solver uses instances of JunoSolve.Var to represent
knowns (i.e, constants) and unknowns in constraints.
As we will see, the three classes are related by subtyp-
ing, although the subtyping in one case is revealed in
an implementation module rather than an interface.
The design of these classes illustrates the use of sub-
classing, partial revelation, and method overriding in
Modula-3. The rest of this article describes the three
classes and their interfaces. There is also a short sec-
tion on the implementation.

Design
An equivalence graph, or Egraph, is a graph together
with an equivalence relation [5]. The graph can be
used to represent functional expressions, and the
equivalence relation can be used to represent known
equalities between nodes of the graph. For example,
Figure 1 shows the Egraph for the constraint
CAR(x) = 2 * y. In this graph, the names x0 and x1 have
been introduced for the first (CAR) and second (CDR)
elements of the pair x, respectively.

Figure 1: The Egraph for the constraint CAR(x) = 2 * y.
In this graph, the dashed lines denote nodes in the
same equivalence class.

The basis for an Egraph is an equivalence relation on

its nodes. Juno-2 uses the following Equiv interface to
maintain the equivalence relation:

INTERFACE Equiv;
EXCEPTION Forbidden;
TYPE

Elt <: Public;
Public = OBJECT METHODS

init(): Elt;
find(): Elt;
union(y: Elt): Elt RAISES {Forbidden};

END;

For those readers unfamiliar with Modula-3, these
declarations introduce the types Elt and Public. The
syntax Elt <: Public declares the type Elt to be a par-
tially opaque subtype of the type Public. Public is
declared to have no data fields and three methods.
Here is the rest of the interface.

An Equiv.Elt is an element of an equivalence relation.
The statement NEW(Equiv.Elt).init() produces a new
element in an equivalence class by itself.
The call x.find() returns the distinguished representa-
tive, or root, of x’s equivalence class.
The call x.union(y) combines the equivalence classes
represented by x and y, and returns the representative
of the new class. After the call x.union(y), x.find() =
y.find(). It is a checked run-time error for either x or y
not to be the root of its equivalence class. The result of
x.union(y) is guaranteed to be either x or y.
The default union method never raises the Forbidden
exception, but it may be useful for subtypes overrid-
ing that method to raise Forbidden in the event that the
operation is deemed illegal by the subtype.

END Equiv.
The expressions in an Egraph are function applica-
tions. For simplicity, Juno-2 uses a more concrete rep-
resentation of function applications than the abstract
one depicted in Figure 1: the function application
f(a1, ..., an) is represented by a linked list of length
n+1 in which the function name f is the first element
of the list, and the arguments are the remaining ele-
ments. For example, Figure 2 shows the representa-
tion of the pair expression (x, 2+y).

Figure 2: The Egraph representation of the expression
(x, 2+y).

The Egraph interface reveals that an Egraph node is
actually a subtype of an Equiv.Elt:

INTERFACE Egraph;
IMPORT Equiv;
TYPE

Pair x

Times

2 y

x0 x1

Pair x

2Plus y

fall 1997 – threads 13

Node <: Public;
Public = Equiv.Elt OBJECT

head, tail: Node := NIL;
METHODS

init(): Node;
END;

An Egraph.Node is a node of an oriented, directed graph
in which every node has out-degree at most 2 and on
which there is an equivalence relation.
The statement NEW(Egraph.Node, head := a, tail :=
b).init() evaluates to a new node in its own equiva-
lence class with children initialized to the values a
and b. The head and tail fields should not be written
after initialization.

END Egraph.

The third class of interest is used to represent con-
stants and variables in constraints. These are both
represented by the partially opaque Var type in the
JunoSolve interface. In this interface, RTVal.T is the type
of a Juno-2 run-time value.

INTERFACE JunoSolve;
IMPORT RTVal;
TYPE

Var <: Public;
Public = Private OBJECT

known: BOOLEAN;
val: RTVal.T;

END;
Private <: ROOT;

If x is of type Var, then x.known indicates if the variable
denoted by x is known (i.e., fixed) or unknown. If
x.known, then x.val is a legal Juno value. If NOT x.known
but x.val # NIL, then x.val is a hint for the initial value
of x.

PROCEDURE New(known := FALSE; val: RTVal.T := NIL): Var;

Return a new, valid Var with the given field values.

The JunoSolve interface also includes procedures for
creating new constraints and a procedure P for solv-
ing a constraint system, but these procedures are
irrelevant to the current discussion.
Notice in the above declarations that both the prefix
and the suffix of JunoSolve.Var are opaque. The prefix is
opaque because the type Private is declared to be an
opaque subtype of the root object type ROOT. The suf-
fix is opaque because Var is declared to be an opaque
subtype of the type Public. The JunoSolve implementa-
tion reveals that a JunoSolve.Var is actually a subtype of
an Egraph.Node.

MODULE JunoSolve;
IMPORT Equiv, Egraph, RTVal, ...;

REVEAL
Private = Egraph.Node BRANDED “JS.Private” OBJECT

pair: EC;
OVERRIDES

union := Union;
END;
Var = Public BRANDED “JunoSolve.Var” OBJECT
type: Type;

Other fields private to the implementation declared
here...

END;
TYPE

EC = Private;

The type “EC“ represents an equivalence class with an
extra field to record if the class contains a pair expres-
sion. We declare the name “EC“ simply to serve as a more
meaningful synonym for the type “Private“ in the imple-
mentation.

Type = { Any, Pair, Num, Text, Null };

There is a flat partial order on types, with “Type.Any“ as
bottom.

The head and tail fields of a JunoSolve.Var are always NIL,
but by virtue of being an Equiv.Elt, a JunoSolve.Var is
also part of the equivalence relation.
When a node is the representative of its equivalence
class and denotes an ordered pair, its pair field is non-
NIL and points to an Egraph list of length 3 in which
the first element of the list is the node denoting the
Pair function and the next two elements are the pair’s
CAR and CDR.
Notice that JunoSolve.Private is revealed to override the
Equiv.Elt.union method with the local procedure Juno-
Solve.Union. Its implementation is sketched below.

Implementation
Space limits do not permit a complete description of
the unification closure implementation. Here, we
summarize three of its aspects.
• The implementation of the JunoSolve.Union proce-

dure first calls the Egraph.Node.union method. It then
performs extra work required by the Juno-2 solver.
For example, it compares the type fields of the two
nodes being merged. If they have incompatible
types, it raises the exception Equiv.Forbidden. If one is
of type JunoSolve.Type.Any and the other is not, the
known type is propagated to the representative of
the new equivalence class.

• Unification closure is implemented by keeping a
queue of pending unifications. First, the con-
straints are processed and each expression is added
to the Egraph. The left- and right-hand sides of each
equality constraint are added to the queue. Then,
so long as the queue is non-empty, the first two ele-
ments in the queue are removed from the queue
and unified using the union method. The imple-
mentation of the JunoSolve.Union procedure has the
side-effect of adding elements to the queue when-
ever two pairs in different equivalence classes are
unified. The time complexity of our implementa-
tion is O(n), where n is the size of the Egraph.

• The Equiv interface is implemented using the well-
known Union-Find algorithm. To evaluate which
implementation would be best for Juno-2, we
wrote an animation for visualizing the perfor-
mance of several different Union-Find implemen-
tations. By instrumenting Juno-2 to print the
sequence of union and find operations it executed,
we discovered that Juno-2’s solver tended to do
many more find operations than union operations.

14 threads – fall 1997

We therefore chose to use the QuickFind imple-
mentation, in which each equivalence class is rep-
resented by a tree of depth at most 1. Each element
has a pointer to the representative element of its
equivalence class. The find operation thus takes
constant time. The union operation works by mak-
ing all of the elements of the smaller class point to
the root of the larger class. The implementation is
straightforward.

Conclusions
The use of multiple object types, subclassing, and
method overriding have led to a modular, compact
implementation of unification closure in the Juno-2
constraint solver. Modula-3’s opaque types and par-
tial revelation facility allowed us to write interfaces
that were clear, simple and reusable.

Acknowledgments
The work described in this article is joint with Greg
Nelson. Thanks to Greg, Bill Weihl, and Marc Najork
for their comments on earlier drafts of this article.

References
[1] Allan Heydon and Greg Nelson. The Juno-2 Constraint-
Based Drawing Editor, SRC Research Report 131a, Decem-
ber, 1994. http://gatekeeper.dec.com/pub/DEC/SRC/
research-reports/abstracts/src-rr-131a.html

[2] Greg Nelson and Allan Heydon. Juno-2 Language Defini-
tion, SRC Technical Note 1997-009, June 30, 1997. http://
gatekeeper.dec.com/pub/DEC/SRC/technical-notes/
abstracts/src-tn-1997-009.html

[3] Edsger W. Dijkstra. A Discipline of Programming, Pren-
tice-Hall, Inc., 1976.

[4] J. A. Robinson. “A Machine-Oriented Logic Based on the
Resolution Principle,” in Journal of the ACM, Vol. 12, No. 1,
pgs 23-41, January, 1965.

[5] Greg Nelson. Techniques for Program Verification, Tech-
nical Report CSL-81-10, Xerox Palo Alto Research Center,
June, 1981. http://www.parc.xerox.com/parc-go.html

Modula-3 in Academia
Department of Computer Science, III
Aachen University of Technology, Germany

Peter Klein, Lehrstuhl für Informatik III

The Department of Computer Science III is one of the
thirteen departments comprising the computer sci-
ence group at the Aachen University of Technology.
Started by Professor M. Nagl, the main research topics
of the department are methods, languages, and tools
for software engineering.
Like many other computer science departments, we
favored Modula-2 in the eighties as the main pro-
gramming language for teaching and project imple-
mentation. In the early nineties, our dissatisfaction
with Modula-2 grew because of its missing support
for modern programming concepts like objects,
genericity, garbage collection, and exception han-
dling. On the practical side, it was also becoming
increasingly difficult to find a Modula-2 environ-
ment that was suitable for our implementations
(approaching 500K lines of code at that time.)
It took us some time to reach agreement on a replace-
ment for Modula-2. Although Modula-3 seemed a nat-
ural choice, our experience with Modula-2 suggested
using a more well-known programming language. As
such, different subprojects started out in C, C++, and
Modula-3, which allowed us to recognize that the
compactness and clarity of Modula-3 allowed us to
produce more robust and reusable code. This factor
proved to be an essential point in our academic set-
ting: with a high fluctuation of rather inexperienced
programmers, a major part of the implementation of
our systems are done by student workers or in the
course of diploma theses.

Project Courses
Since 1993, we have used Modula-3 successfully in a
series of project courses for graduate students. These
projects introduce different aspects of software devel-
opment including project planning, supervision,
design, and cooperative implementation of small but
usable software systems. Central ideas of software
design and object-oriented implementation are pre-
sented and discussed together with the concepts of
Modula-3, which is also used as the implementation
language. The success of these projects has been a
strong argument for Modula-3 as a teaching and
development language since it clearly enables a con-
tinually changing group of students to learn the lan-
guage, its concepts, and its libraries as well as to
produce sensible results collaboratively and within a
short time.
Some of the project courses resulted in usable soft-
ware, including m2tom3 and readthis.

m2tom3: migrating Modula-2 programs

The m2tom3 system helps with migration of Modula-

fall 1997 – threads 15

2 programs to Modula-3. It consists of two parts:

• A conversion program that creates a Modula-3
source with the same semantics as a Modula-2
source while retaining the original’s look and feel
as much as possible.

• A base library that tries to emulate the Modula-2
standard library using the Modula-3 standard
library. Written to support our own transition to
Modula-3, we have successfully used it to convert
most of our software. Noticeably, the next release
of the PROGRES system, an implementation of a
specification language based on graph grammars,
will be Modula-3-based.

readthis: network access to hierarchies

The readthis system is a simple, Network Object-based
server for accessing hierarchies of text files. Demo
applications contained in the distribution are a very
simple news/blackboard system called mininews and
a problem management system called bugtrack (com-
parable to gnats/tkGnats). For more information on
readthis visit http://www-i3.informatik.rwth-aachen.de/
research/readthis/. readthis can be freely download
from ftp://ftp-i3.informatik.rwth-aachen.de/pub/Modula-3-
Contrib/readthis.
We have also been engaging in a number of longer-
term research projects, which are described below.

Research Projects:

GRAS: graph-oriented database system

GRAS is a database system that supports application
domains such as software engineering or computer
integrated manufacturing. These systems are usually
highly interactive so they deal with rather complex
object structures. For the realization of these systems,
a nonstandard database system is needed to effi-
ciently handle different types of coarse- and fine-
grained objects (documents and paragraphs), hierar-
chical and non-hierarchical relations between objects
(composition links and cross references), and
attributes of rather different sizes (chapter numbers
and bitmaps). Furthermore, this database system
should support incremental computation of derived
data, undo/redo of data modifications, error recovery
from system crashes, and version control mecha-
nisms.
GRAS is a graph-oriented database system with a
multi-client/multi-server architecture. From the first
prototype in 1985, gradually improving versions
have been used in different software engineering
projects. Currently, a version automatically derived
from a Modula-2 implementation using m2tom3 is
shipped in binary form with the PROGRES release. A
new implementation called GRAS-3 written directly
in Modula-3 will be released around the end of 1997.

TXL-3: transformational programming

TXL-3 is an implementation of the TXL language in
Modula-3. TXL is a programming language for doing
transformational programming, originally designed
by James R. Cordy, Queen’s University at Kingston,
Canada. The basic paradigm of TXL involves trans-
forming input to output using a set of transformation
rules that describe by example how different parts of
the input are to be changed into output. TXL has been
used to transform C, C++, Cobol, and Modula-3 pro-
grams. Each TXL program defines its own context-
free grammar according to how the input is to be bro-
ken into parts, and rules are constrained to preserve
grammatical structure in order to guarantee a well-
formed result.

adt: design-centered development

The adt project is building a design-centered develop-
ment environment for both large-scale and small-
scale programming.
The core of the adt prototype is an editor for a soft-
ware architecture design language. Existing Modula-
3 source code can be analyzed to visualize its archi-
tectural structure, and code skeletons can be gener-
ated from an architecture description.
A major goal of adt is to assist the programmer by
providing him with an architectural view of his sys-
tem without requiring the use of special tools. So, we
made it quite easy to adapt adt not only to use it with
any editor or compiler, but also to integrate it with
other tools for revision control, browsing, e-mailing/
conferencing, problem reporting, or any other tools
needed in everyday work. In order to keep the partici-
pating documents consistent while allowing differ-
ent tools to modify them, adt supports incremental
updates between an architecture description and
source code, so that changes in the architecture can
be propagated into existing Modula-3 sources and the
architectural plan can be mapped to source modifica-
tions.
An early demo of adt was built for a project course in
1994. A complete new implementation making use
of the GRAS-3 database and TXL-3 is currently under
construction and will, apart from the architecture
language mentioned above, also feature extensions
for concurrent and distributed systems and interac-
tion diagrams comparable to the collaboration dia-
grams in Unified Modeling Language. A release is
planned for early next year.

thr
ead
s

Aachen University of
Technology, in Aachen,
Germany has been
using Modula-3 success-
fully for a number of aca-
demic and research
projects since 1993.
Peter Klein, a member of
the CS Department III at
Aachen University of
Technology, reports on
some of their experiences.

m2tom3 is freely avail-
able at ftp://ftp-
i3.informatik.rwth-
aachen.de/pub/Modula-
3-Contrib/m2tom3/

For more information
about GRAS, visit:
http://www-i3.
informatik.rwth-
aachen.de/research/
gras/

For more information
about PROGRES, visit:
http://www-i3.
informatik.rwth-
aachen.de/research/
progres/

TXL-3 is freely available
at URL:
ftp://ftp-i3.informatik.
rwth-aachen.de/pub/
Modula-3-Contrib/txl-3/

They can be with

2

Are your distributed applications bulletproof?

1 7 7 0 M a s s a c h u s e t t s A v e n u e
C a m b r i d g e , M A 0 2 1 4 0 U S A
w w w . c m a s s . c o m

Win NT
Win 95
Solaris
SunOS
Linux

HP/UX
SGI Irix

Digital Unix

R E A C T O R

Reactor is a
programming
environment
designed to
support the
development of
robust,
enduring, and
distributed
applications.

At the center
of Reactor is a
state-of-the-art
object-oriented
programming
language with
built-in support
for garbage
collection,
threads and
exceptions.

The
environment
integrates a
full-featured
web browser
and an easy-to-
use builder.

Reactor also
comes with a
large array of
royalty-free
run-time
libraries for
distributed
objects, interfaces
to X11 and TCP,
threads and www
access.

