
A UDP Interface

Allan Heydon

DRAFT — December 11, 1998 — DRAFT

1 UDP.i3

The User Datagram Protocol (UDP) is a connectionless protocol for sending data packets (ordata-
grams) over the internet. UDP runs on top of the Internet Protocol (IP). It provides a simple datagram
service that guarantees the integrity of delivered packets. However, unlike the Transmission Control
Protocol (TCP), which also runs on IP, UDP does not guarantee reliable delivery of packets: pack-
ets may be dropped or duplicated, and any corrupted packets are simply discarded. Nor does UDP
provide any sequencing guarantees.

Like TCP, each UDP endpoint is identified by the IP address of a host together with a port
number (see the IP interface for a description of IP endpoints). Hence, datagrams may be addressed
to different processes (listening on different ports) that are running on the same host.

The complete UDP protocol is documented in Internet RFC 768 [1].

INTERFACE UDP;

IMPORT IP, Thread;

TYPE
Datagram = RECORD

other: IP.Endpoint;
len: CARDINAL;
bytes: REF ARRAY OF CHAR;

END;

A UDP.Datagram represents a packet of data. Ifd is aDatagram, thend.other is the IP endpoint
to which the packet will be sent, or from which it was received,d.len is the length of the packet,
andd.bytes contains the packet contents. A valid packet hasd.bytes # NIL andd.len <=
NUMBER(d.bytes^), in which case the bytes of the packet are ind.bytes[0..(d.len-1)].

EXCEPTION Timeout;

The Timeout exception may be raised to indicate a timeout on a blocking UDP operation. The
UDP implementation may also raise theIP.Error exception; arguments to this exception will be
one of the predefined valuesIP.NoResources or IP.PortBusy, or a message indicating that an
unexpected error occured.

TYPE

1



T <: Public;
Public = OBJECT METHODS

init(myPort: IP.Port; myAddr := IP.NullAddress): T
RAISES {IP.Error};

send(READONLY d: Datagram): INTEGER
RAISES {IP.Error};

sendText(READONLY other: IP.Endpoint; t: TEXT): INTEGER
RAISES {IP.Error};

receive(VAR (*INOUT*) d: Datagram; timeout: LONGREAL := -1.0d0)
RAISES {Timeout, IP.Error, Thread.Alerted};

close()
RAISES {IP.Error};

END;

END UDP.

A UDP.T is a handle on a socket for receiving datagrams on a particular port.
The expressionNEW(UDP.T).init(myPort) evaluates to a new UDP handle for listening on

portmyPort. If the program is being run on a machine with multiple IP addresses, anIP.Address
argument can also be passed in the optionalmyAddr parameter to indicate which network interface
will be used by this handle to send and receive datagrams.

If a UDP handle is closed using theclose method, theinit method can be called again to
initialize the handle on a different port/address. All methods of aUDP.T other thaninit require
that the UDP handle has been initialized;init requires that the handle is new or closed.

The descriptions of the remaining methods assume thatudp denotes an initializedUDP.T.
The calludp.send(d) sends the datagramd, returning the number of bytes that were success-

fully sent.
The calludp.sendText(other, t) sends the contents of the textt to the endpointother,

returning the number of characters oft that were successfully sent.
The call udp.receive(d) blocks until a datagram is sent toudp’s port/address. On entry,

d.bytes should point to an array of characters large enough to contain incoming datagrams. On
exit,d.other is set to the endpoint from which the datagram was sent,d.len is set to the length of
the received datagram, and the contents of the datagram are written intod.bytes[0..(d.len)-1].
If the packet that was received is larger than the initial value ofd.len, the packet is truncated to
d.len bytes.

If a non-negative value is supplied fortimeout, the method will raiseTimeout if timeout
seconds elapse without a packet being received. Negative values oftimeout indicate an indefinite
wait. If the calling thread is alerted before a packet is received,Thread.Alerted is thrown.

The calludp.close closesudp. Invoking any methods other thaninit on a closed handle
results in a checked run-time error.

References

[1] J. Postel. Internet RFC 768: User Datagram Protocol, August 1980. Available on the world-wide
web at “http://www.freesoft.org/CIE/RFC/768/”.

2


