

1

 threads – fall

1996

Foreword

Remembering Geoff Wyant

Bob Sproull, Sun Microsystems Laboratories

Geoff was a smart, accomplished computer scien-
tist. Since graduating from Ohio State, he worked
at Harris, Apollo Computer (since acquired by
Hewlett Packard), Centerline Software, and most
recently with a group of about twenty of us at Sun
Microsystems Laboratories here in Chelmsford.
He worked on hard problems--how to coordinate
the activities of many computers operating
together in a network--and brought to these tasks
both a mathematician’s precision and an engi-
neer’s desire to build elegant systems. As his
career developed, he took on increasingly difficult
problems with ever greater personal leadership.
This year, he was a principal investigator on a
research project seeking to unify diverse data-
bases that are spread around a computer network.

But enough of Geoff’s technical accomplish-
ments. Even those of us who can understand his
contributions find our memories of him are more
personal than technical.

Geoff was an ideal colleague. He was smarter than
we are, so we learned a lot from him. He read the
technical literature voraciously, and was a foun-
tain of information about obscure projects and
technologies. He worked well in teams, but cer-
tainly best just sitting with you, explaining some-
thing. He was a patient teacher; we have all been
his students.

Geoff’s standards were high. We will all remem-
ber a unique facial expression--eyes wide, his
whole face in a silent smile of victory--that he
flashed to signal uncovering the subtle flaw or
hidden weakness in a technical argument. This
usually happened during a seminar, after Geoff
himself had asked the penetrating question that
made it all clear.

But probably most of all we remember Geoff for
his humor. He was deceptively quiet--some might
say shy--until he delivered one of his trenchant
one-liners. Not so much a witticism as a sharp
insight from a different point of view that forced
you to think, then howl with laughter. It’s diffi-
cult to describe his sense of humor: fresh, off-beat,
never conventional or repetitious.

We didn’t see much of Geoff’s family at work, but
we knew they came first. On Sun picnics and out-
ings, Carole and Rebecca and Gregory came along,
and we all watched Geoff lovingly tend to them
and their enjoyment of the event.

Geoff loved his life and his work, and injected
some of that spirit into each of us. We will miss
him as a colleague and friend.

 jjj

Threads

A Modula-3 Newsletter

We are pleased to bring you a second issue of

Threads: A Modula-3 Newsletter

. By publishing this
newsletter we hope to establish a forum of discus-
sion and information sharing about Modula-3 and
what various organizations--industrial or aca-
demic--are doing with Modula-3. We tried to make
the articles accessible to both currently active and
potential Modula-3 users. We hope to invite those
who now use other programming languages give
Modula-3 a try, too.

We welcome your ideas and contribution in shap-
ing the future of Threads. We imagine that
Threads will change with your input over the
next few issues. Please send your comments to

threads@cmass.com

. You can also view

 Threads

,
on-line at

http://www.cmass.com/threads

.

jjj

What is Modula-3?

Modula-3 is a simple and modular programming
language, providing facilities for exception han-
dling, concurrency, object-oriented programming,
automatic garbage collection, and systems pro-
gramming without involving the complexities
forced by other languages of its class. Modula-3 is
both a practical implementation language for
large software projects and an excellent teaching
language.

A free implementation of Modula-3 is available
from Digital Systems Research Center. For more
information visit the

Modula-3 Home Page

 at

http:/
/www.research.digital.com/SRC/modula-3/html/
home.html

.

Reactor

, a commercial distributed application
development environment based on Modula-3, is
available from Critical Mass, Inc. For more infor-
mation, send e-mail to

info@cmass.com

.

jjj

thr
ead

s

Geoff Wyant, a dear friend
of the Modula-3 community
and an editor of Threads,
died in a tragic plane acci-
dent on Father’s Day, 16
June 1996. Geoff is survived
by his wife and two young
children.

Bob Sproull, director of Sun
Labs East where Geoff last
worked, shared a few words
with us that eloquently char-
acterize Geoff’s spirit. For
more information, visit Geoff
Wyant’s Memorial Page at:

http://www.cmass.com
/people/geoff/.

Editors

Farshad Nayeri
Critical Mass, Inc.

Allan Heydon
Digital Systems Research
Center

Bill Kalsow
Critical Mass, Inc.

Emon Mortazavi
GTE Laboratories, Inc.

fall

1996

 – threads

2

Issue 2

Table of Contents

Foreword. 1

Remembering Geoff Wyant

Bob Sproull

Geoff Wyant, a dear friend of the Modula-3 com-
munity, died last summer in a tragic airplane acci-
dent. Bob Sproull writes in memory of Geoff.

Feature Article . 2

Reactor Goes On-line!

Farshad Nayeri

Farshad Nayeri introduces

Reactor

, a development
environment for building robust distributed
applications.

Continuing Thread . 5

A Reusable Software Double-Buffer

Allan Heydon and Greg Nelson

In their second article in a series about Juno-2, a
constraint-based drawing editor, Allan Heydon
and Greg Nelson describe the design and imple-
mentation a reusable software double-buffer
object in Modula-3.

How Modula-3 got its spots? . 8

Why checked run-time errors
are not exceptions?

Greg Nelson

Ever wonder why the language doesn’t map all
run-time errors to exceptions?

Modula-3 in Academia . 8

Teaching Computer Science with Modula-3

Spencer Allain and Farshad Nayeri.

With the debut of the English translation of the
Modula-3 introductory textbook,

An Introduction to
Programming with Style

, and the new release of

SRC Modula-3

, it may be time for you to consider
using Modula-3 for teaching computer science.
Find out why!

Advanced Research Topics . 12

Link-Time Optimization for Modula-3

Mary Fernandez

Mary Fernandez describes her work in imple-
menting high-level programming languages with
late binding and shows how Modula-3’s features
that require late binding can be implemented
more efficiently with an optimizing linker. The
linker also helps with inlining object-oriented
code.

Feature Article

Reactor Goes On-line!

Farshad Nayeri, Critical Mass, Inc.

After announcing our plans to produce a pro-
gramming environment for robust distributed
applications last year--back then named

Photon

--
we at Critical Mass started its development. Aim-
ing at a quick, incremental upgrade to the existing
state-of-the-art Modula-3 system, we planned on
first releasing the system for Linux, working our
way to supporting other Unix platforms, and
eventually moving on to Windows.

A lot has changed since then. Those who have
tried the preview release noticed that it supported
Windows 95 and NT. Indeed, our current release
supports cross-platform development on Unix
and Windows systems through a unified pro-
gramming environment for building distributed
applications. With the newly-added incremental
garbage collector, cross-platform network objects,
native threads and DLL support, Open Database
Connectivity (ODBC) interface, and a stable port
of the Trestle window system, Reactor’s support
for Win32 is finally on par with Unix!

Today’s
Integrated Development Environments

The trend toward Integrated Development Envi-
ronments (IDEs), popularized by the advent of
GUI-based operating systems such as Windows,
has reshaped the programming landscape signifi-
cantly. Using today’s popular IDEs involves tra-
versing a complex (and not always intuitive)
maze of windows, menus, and tool bar hierar-
chies. Developing code in these environments is
so complicated that vendors feel compelled to
throw in “wizards”, “hint screens”, and “expert”
help systems to guide you through tasks. (If you
think using the “integrated” environment is hard,
try the command-line interface for their com-
piler!) Many of these systems lock you into propri-
etary project formats and user interfaces, making
integration with your favorite editor, system utili-
ties, and productivity tools difficult. Finally, to
strengthen C++’s weak support for building pro-
grams, you may have to invest in additional tools
such as separate memory managers, separate
bounds checkers, and separate builders.

Unix systems vendors typically take an “open sys-
tems” approach: they expect you to purchase each
component from a different vendor, ultimately
resulting in little or no integration between com-
ponents. (If the code generated by your CORBA
stub generator crashes the new version of your
C++ compiler, whose support line do you call?)
The net result: you have to work around not only
the design and implementation flaws of each
product, but also integration problems between

This article describes Reac-
tor, a development environ-
ment for building robust
distributed applications
from Critical Mass, Inc.

Reactor combines Modula-
3’s support for developing
robust, distributed applica-
tions and the web’s support
for displaying complex,
inter-related information to
construct a powerful but
easy-to-use development
environment. This article
introduces Reactor, outlines
its strengths, and motivates
some of the decisions in its
development. To learn more,
visit the Reactor web page
at:

http://www.cmass.com/
/reactor/

Farshad Nayeri is the Direc-
tor of Product Development
at Critical Mass, Inc.

3

 threads – fall

1996

products. The truth is that, despite the sharp rise
in complexity of target applications, the general
nature of Unix system development at its core has
changed little in the past two decades. Due to mar-
ket and political pressures and the high costs of
writing portable, reliable code in C++, many Unix
systems vendors today tailor their environments
to only a few platforms. If you need to build multi-
platform, robust applications, you must base your
code on a patchwork of tools and language sub-
sets, or be prepared to roll your own.

Worse yet, if you are targeting both Unix and Win-
dows, you are constrained by the distinct develop-
ment philosophies, development user interfaces,
and configurations. It’s no wonder that only a few
organizations ship robust, cross-platform pro-
grams.

A New Approach

We would like to change all that! In producing
Reactor, we aimed to produce a no-nonsense, uni-
fied development environment for serious devel-
opers whose first and foremost goal is to build
robust applications. We realized that to do this,
we must:

•

Make the programmers more productive

. This requires
raising the lower-bound on the environment and lan-
guage support for building robust applications sig-
nificantly. We also have to make it easy for new
developers to make the switch to this higher level of
productivity.

•

Eliminate unnecessary details and differences

. Unify
developer’s environment to the degree that a Unix
developer feels comfortable developing or shipping
with Reactor on Windows. Cross-platform compati-

Figure 1: Reactor User Interface

bility is a must; porting serious distributed applica-
tions from one operating system to another must be
easy.

•

Utilize existing technologies

. Avoid locking the user
into proprietary, risky, or non-standard technologies
as much as possible. Take advantage of investments
in existing, relevant infrastructure and standards
when they solve users’ problems.

•

Practice what we preach

. Utilize the tools ourselves. If
we are right, our costs for developing, enhancing, and
supporting Reactor on multiple platforms will not be
prohibitive. Hence we can pass on some of the cost-
savings to the customer.

We noticed quickly that our goals were conflict-
ing. For example, it is hard to use standard tech-
nologies if what we are trying to do is to raise the
programming standards. In practice, we have had
to strike a delicate balance: while we could not
always count on standard technologies, we tried
to adhere to standards that matter to users. Of
course, there are many standards endorsed by var-
ious organizations, and there are even more pro-
prietary solutions.

To achieve all these goals, we have had to tread
carefully to adhere to standards that are relevant
to users and count on non-standard technologies
when their advantages significantly outweighed
their disadvantages. Using web technology as the
user interface for our system allows us to capital-
ize on an already relevant and growing standard.
While not a standard, Modula-3’s support for
building robust distributed programs continues
to be unmatched by existing “standard” technolo-
gies such as C++ and CORBA. We believe that the
combination of the web-based interface, the clean
design of the Modula-3 system, and the extensive
portable libraries results in an unprecedented
level of support for the programming activities
required for building robust distributed applica-
tions.

How Reactor Works

Reactor’s IDE is a customized HTTP server that
maintains a personal database of your programs
and their relationships—all continuously
updated. You interact with Reactor using your
favorite web browser. Coupled with a new inte-
grated builder, Reactor allows you to browse,
build, run, and share programs using the same
unified interface on all platforms. While the look
of Reactor changes slightly from one web browser
or platform to another, its feel and function stay
the same no matter where you are. Thanks to
Modula-3’s support for development of multi-
threaded, high-performance servers with long-
running activities, the basic system design for
Reactor is quite straightforward. At the core of
Reactor is a custom server providing access to a
virtual namespace of program elements. Each pro-
gram element has an associated URL. For example,
to visit the thread interface, you browse to the

fall

1996

 – threads

4

path “

/interface/Thread

” on a Reactor server. Reac-
tor returns a dynamically marked-up view of the
interface complete with syntax highlighting and
links to other relevant information. Each program
element (for example, a module) has a link to
other elements (for example, the types it defines
or interfaces it imports). Pre-defined elements pro-
vide views to all interfaces, packages, programs,
libraries, package collections, types, project
descriptions, past compilation results, and docu-
mentation. An optional action parameter can be
appended at the end of each path; the default
action is

[view]

 which displays a node. Other
actions, such as

[build]

,

[edit]

, and

[run]

 activate
the actions of building packages, editing source
files, and running programs.

Figure 2

 shows the
architecture of Reactor’s IDE.

Certainly, the web-based organization makes it
easy to traverse large amounts of information
about your programs. For some tasks, however,
using the web as a medium has not proven easy.
For example, displaying dynamic output of a com-
pilation is more difficult since we have less con-
trol over the user interface than the traditional
IDE. Nonetheless, by taking advantage of threads,
we’ve made it possible for you to leave a build ses-
sion and re-attach to it later--the compilation pro-
ceeds in the background, and the new results are
displayed when you revisit the compilation page.

More importantly, the integration with the web
means the Reactor user interface works on all plat-
forms, and allows you to share information about
your programs with your co-workers easily by
sending URLs. Remote programming is also a lot
easier. Some users have gone as far as using Reac-
tor to build, browse, and run programs on a Win-
dows/NT system from a browser running on a
Unix host.

A New Compiler, A New Run-time System,
and New Libraries

We were on a roll improving the system, so we
didn’t stop at just a new IDE; we’ve also made
major renovations to the architecture of the com-
piler, the run-time system, and the libraries.

The new system integrates the builder and the
compiler into one process. A single executable
named cm3–Critical Mass Modula-3–does all the
building and front end work, calling the back end
to generate native code. A single configuration file
defines the native compiler settings and descrip-
tions of external commands; it is evaluated each
time the compiler is invoked so reconfiguring the
compiler is a simple matter of changing the file.
The compiler keeps track of program elements,
deducing dependencies automatically whether or
not you use makefiles.

Figure 3

 illustrates the
new compiler architecture.

The new runtime can produce and link against
shared libraries on all supported platforms,

including DLLs on Windows. The new incremen-
tal garbage collector has already proven to be
essential in building response-critical Windows
applications for some users. Among other new
features, the current release of Reactor includes a
safe interface for accessing relational databases
via ODBC, cross-platform pickles, and a web tool-
kit for constructing custom web servers. Last but
not least, support for robust distributed program-
ming through the use of cross-platform Network
and Stable Objects is one among several hundred
facilities included with Reactor.

Future Directions

Our next step is to enhance Reactor’s integration
with operating systems components such as
Microsoft’s Active-X (a.k.a. OCX), and to expand
the set of available portable libraries for distrib-
uted programming.

 jjj

User Interface:
off-the-shelf
web browser

Program
Element
Database

Reactor Multi-threaded
Dynamic Development Server

cm3
Program
Compiler/Builder

Path
Expression
Resolver

HTTP
HTML

REACTOR
SYSTEM
ARCHITECTURE
SCHEMATIC

Figure 2: Reactor User Interface Architecture

Builder
m3build

Scripting Engine
quake

static
site
config.
template

Compiler
m3c

Builder/Compiler
cm3

External Command
(e.g., the linker)

Scripting
Library
quake

External Command
(e.g., the linker)

Release 3 (old)

Release 4 (new)

dynamic site
configuration
script

makefile
(optional)

makefile
(required)

Figure 3: New Compiler Architecture

5

 threads – fall

1996

Continuing Thread

A Reusable Software Double-Buffer

Allan Heydon and Greg Nelson
Digital System Research Center

Double-buffering is a well-known graphics tech-
nique for delaying the effect of graphics opera-
tions. It is usually implemented by rendering
graphics operations into an off-screen buffer. The
contents of the buffer are then copied to the
screen in one atomic operation. Ideally, the copy is
faster than the time required for the monitor to
refresh the screen, so no visual artifacts are visible.

Since there is a performance penalty associated
with copying, double-buffering is sometimes
implemented in hardware. This article describes a
software implementation based on the Trestle
window system. In Trestle, a window is an object
called a virtual bitmap terminal (VBT) whose
behavior is determined by its methods.

In Juno-2, we exploit the effect provided by dou-
ble-buffering in two ways. First, rendering a draw-
ing can take enough time that the action is
perceptible. If the graphics are drawn directly on
the screen, the user perceives the rendering as a
sequence of graphics operations, rather than as a
single update. With a double-buffer, the interme-
diate painting operations are delayed so that the
user sees only the final image. Second, double-
buffers are essential for producing smooth anima-
tions. An animation is rendered by repeatedly
painting the entire window in a background
color, such as white, and then painting the next
frame of the animation. Without double-buffer-
ing, this produces a distracting flickering effect.

The

DblBufferVBT

 interface also provides an exten-
sion of standard double-buffering; namely, opera-
tions for saving and restoring the double-buffer’s

This is the second in a series
of articles about Juno-2, a
constraint-based drawing
editor. The previous article
described the implementa-
tion of the Juno-2 user inter-
face. This article describes
the design and implementa-
tion of the type DblBuffer-
VBT.T, a reusable software
double-buffer object.

Allan Heydon and Greg
Nelson are members of
research staff at Digital Sys-
tems Research Center.

dbl offScreen

ch

DblBufferVBT.T VBT.Leaf

VBT.T

sync

painting
operations

Figure 1: A DblBufferVBT.T dbl with child ch. The double-buffer
creates an off-screen VBT offScreen into which it directs its child's
painting operations. The sync method flushes the accumulated
painting operations to the on-screen parent.

contents. This is convenient for producing anima-
tions with permanent paint, that is, paint that
should be included in all subsequent frames.

Design

Here is the start of the actual

DblBufferVBT

 inter-
face.

INTERFACE DblBufferVBT;

A

DblBufferVBT.T

 is a filter that redirects the paint-
ing operations of its child to an off-screen buffer,
and then updates its screen from the buffer when
the child’s sync method is invoked. This can be
accomplished by calling the

VBT.Sync

 procedure
with the child or any of the child’s descendants as
arguments.

IMPORT VBT, Filter;
TYPE T <: Filter.T;

The call

NEW(DblBufferVBT.T).init(ch)

returns a
newly initialized double-buffer VBT with child

ch

.

The child coordinate system of a double-buffer
VBT is a translation of its parent’s coordinate sys-
tem. You can compute the translation vector
between the parent and child by subtracting the
northwest corners of their domains.

A double-buffer

VBT v

 does not forward repaint
events to its child; instead, it repaints by copying
from the off-screen buffer.

Figure 1

 illustrates the VBTs involved in double-
buffering, and the way painting operations flow
through the off-screen buffer. The solid arrow rep-
resents that ch is the child VBT of the double-
buffer

dbl

.

Next, we describe an extension provided by

Dbl-
BufferVBT

 for saving and restoring a double-buff-
er’s contents.

It is common for all of the frames in one scene of
an animation to share a common background.
Although the client could paint the background
afresh on each frame, it would be more efficient
and convenient to take a snapshot of the back-
ground and restore it at the start of each frame.
The rest of the

DblBufferVBT

 interface provides just
such a facility.

In addition to its off-screen buffer, a

DblBufferVBT.T

maintains a saved buffer and provides operations
for copying the off-screen buffer to and from the
saved buffer. This is convenient for building up a
background to be restored on each frame of an
animation, for example. The initial content of the
saved buffer is a conceptually infinite pixmap of
background pixels.

Here are the procedures for saving, restoring, and

fall

1996

 – threads

6

clearing the saved buffer:

PROCEDURE Save(v: VBT.T);

Requires that some proper ancestor of

v

 be a

T

. Sets
the saved buffer of the first such ancestor to be a
copy of its off-screen buffer.

PROCEDURE Restore(v: VBT.T);

Requires that some proper ancestor of

v

 be a

T

. Sets
the off-screen buffer of the first such ancestor to
be a copy of its saved buffer.

Save(v)

 and

Restore(v)

 force all painting opera-
tions (paint batches, in Trestle terminology) from
v to the relevant off-screen buffer. This will work
smoothly if v is the only leaf descendant of the rel-
evant double buffer (i.e., if all splits between them
are filters). Otherwise, you may get the wrong
answer due to unforced paint batches on other
leaf descendants.

PROCEDURE ClearSaved(v: VBT.T);

Requires that some proper ancestor of

v

 be a

T

.
Clears the saved buffer of the first such ancestor to
contain an infinite pixmap of background pixels.

END DblBufferVBT.

Figure 2 illustrates how the

Save

 and

Restore

 oper-
ations copy between the off-screen buffer and the
saved buffer.

Implementation

For efficiency, a

DblBufferVBT.T

 maintains two rect-
angles named

screenDiff

 and

savedDiff

.

The

screenDiff

 rectangle is a bounding box of all
pixels that differ between the on-screen window
and the off-screen buffer. When painting opera-
tions are forwarded from the child to the off-
screen buffer, a conservative bounding box for the
operations is computed, and the

screenDiff

 rectan-
gle is augmented to include the pixels affected by
those operations. The

sync

 method copies only the
pixels contained in

screenDiff

, and then sets that
rectangle to

Rect.Empty

. This technique reduces
the copying cost by copying a smaller area than
the entire window. Of course, if pixels have
changed at opposite corners of the window, then
almost the entire window will be copied. In our
experience, however, the overhead of computing
more accurate bounding regions is justified by the
savings in copying costs.

The

savedDiff

 rectangle is a bounding box of all
pixels that differ between the saved buffer and the
off-screen buffer. This rectangle is also augmented
to include pixels changed by new painting opera-

tions. Both the

Save

 and

Restore

 procedures copy
only the pixels contained in the

savedDiff

 rectan-
gle, and then set the rectangle to

Rect.Empty

.

Example

Figure 3

 shows several snapshots of an animation
demonstrating a discovery of Rida Farouki: If you
walk along the graph of the curve

 y = x

4

 carrying a
beam that extends one unit in each direction, the
inner tip of the beam traces out a star.

This example demonstrates the use of the double-
buffer’s saved buffer. Each frame can be divided
into three parts: the background common to all
frames (the black curve and the text), the perma-
nent paint that should be included in all subse-
quent frames (the path drawing a star), and the
ephemeral paint that should only be included in
this frame (the beam). Here is the code for the ani-
mation:

PaintBackground(ch);
VAR start := Time.Now(); t, tLast := 0; BEGIN

WHILE t < Duration DO
PaintPermanentPath(ch, t, tLast);
DblBufferVBT.Save(ch);
PaintEphemeralBeam(ch, t);
VBT.Sync(ch);
DblBufferVBT.Restore(ch);
tLast := t;
t := Time.Now() - start

END;
PaintPermanentPath(ch, Duration);
PaintEphemeralBeam(ch, Duration);
VBT.Sync(ch)

END

First, we paint the background common to all
frames. Then, we render each frame. After paint-
ing the permanent paint, we

Save

 the contents of
the double-buffer so that the permanent paint
will become part of the background on subse-
quent frames. After calling

Sync

 to copy the off-
screen buffer to the screen, we

Restore

 the back-
ground for the next frame. The last frame painted
from within the

WHILE

 loop is for a value of t less

dbl offScreen

ch

DblBufferVBT.T VBT.Leaf

VBT.T

sync

painting
operations

VBT.Leaf

savedBuffer
Save

Restore

Figure 2: The Save and Restore operations copy the off-screen buffer to and
from the saved buffer.

7

 threads – fall

1996

than the animation’s full duration. So, upon com-
pletion of the loop, we paint the animation’s final
frame.

You can see from the size of the dashed

screenDiff

rectangle that the double-buffer implementation
excels at minimizing the number of pixels copied
on each frame. In general, the rectangle includes
only the pixels for the beam from the previous
frame (since those had to be erased), the new piece
of the star-drawing path, and the new beam.

Performance

Figure 4

 shows the performance of the double-
buffer while animating a simple filled triangle.
These measurements were made on a Digital
3000/600 Alpha workstation equipped with a 175
MHz DECchip 21064 processor, and an 8-bit frame
buffer, and running Digital Unix (OSF/1). Each
point (

x

,

y

) corresponds to a single frame:

x

 is the
number of pixels painted for the frame (i.e., the
area of the screenDiff rectangle), and

y

 is the
elapsed time in milliseconds (ms) between that
frame and the next. The graph shows that soft-
ware double-buffering has a fixed cost of about 3
ms per frame, and a marginal cost of 1 ms per 40K
pixels per frame.

The data for

Figure 4

 were collected while ani-
mating a very simple drawing, in which the dou-
ble-buffer copying costs (0 – 9 ms) dominated the
graphics costs (fractions of a ms). The copying
overhead is less noticeable in a more typical draw-
ing, where the graphics can require tens or even
hundreds of milliseconds. Even so, the relatively
steep slope of the line in the figure indicates that
the overhead of computing the

screenDiff

 and

savedDiff

 rectangles is worthwhile.

y = x 4 y = x 4 y = x 4

y = x 4 y = x 4 y = x 4

Figure 3: Several animation snapshots. The dashed rectangle shown in each snapshot
is the screenDiff rectangle copied by the sync operation.

Figure 4: The per-frame cost of software double-buffer
as a function of the number of pixels painted per frame.

0 1 2 3 4
0

3

6

9

12

15

area
(100K pixels)

time (ms)

Conclusions

The hallmark of the double-buffer design is its
simplicity. To double-buffer some window, a cli-
ent simply has to wrap a

DblBufferVBT.T

 around
the

VBT.T

 corresponding to the window, and then
make calls to

VBT.Sync

 at appropriate times to
flush the double-buffer. Hence,

DblBufferVBT.T

 is a
reusable class that can be applied on a per-win-
dow basis. It is a good example of the extensibility
made possible by the object-oriented Trestle
design.

The facility provided by the double-buffer’s saved
buffer is also quite useful. We employ it in Juno-2
for two purposes: for animations with permanent
paint and for implementing tools with a text argu-
ment. In the latter case, we first save the current
drawing into the saved buffer. Then, for each char-
acter the user types, we restore the off-screen
buffer from the saved buffer, apply the tool’s pro-
cedure with the text typed up to that point, and
then sync the off-screen buffer. Previously, we had
to redraw the entire figure on each character; for
complicated figures, this could result in an annoy-
ing delay between keystrokes.

So far,

DblBufferVBT

s are used only in Juno and in
one other Trestle application: a shared white-
board. However, they could easily be retrofitted
into such applications as the Zeus algorithm ani-
mation system and the

GraphVBT

 implementation.
It would probably simplify the code in both cases,
since those systems are already performing their
own double-buffering.

Acknowledgment

Steve Glassman helped us with the original imple-
mentation of the

DblBufferVBT

 interface.

 jjj

fall

1996

 – threads

8

How Modula-3 got its spots?

Why checked run-time errors are not
exceptions?

Greg Nelson, Digital System Research Center

Modula-3 defines a

checked run-time error

 as an
error that implementations must detect and
report at run-time. For example, using an array
index that is out of bounds is a checked run-time
error.

The method for reporting checked run-time errors
is

implementation-dependent

. For example, in a pro-
gram development environment, the most useful
implementation action would probably be to
enter a debugger. However, in an operating tele-
phone switch, appropriate actions would more
likely include logging the error and restarting the
switch software.

Proponents of mapping checked run-time errors
to exceptions argue that the language should be
changed to require implementations to raise pre-
defined exceptions on checked run-time errors.
This would give programmers maximum flexibil-
ity to recover from the error in whatever manner
is appropriate for the application. But this argu-
ment doesn’t stand up to scrutiny.

First, when a checked run-time error is detected,
the appropriate recovery action almost always
requires implementation-dependent actions.
Changing the language to provide an implemen-
tation-independent way to detect such errors only
postpones the problem. For example, there is no
implementation-independent way to enter a
debugger, to log an error, or to restart a server.

Second, it is important to realize that checked
run-time errors can occur in threads that are
forked by libraries, as well as in an application’s
main code path. If errors were mapped to excep-
tions there would be a need for “

TRY

” statements
to handle these exceptions wherever a thread
forked. When a program moved from testing into
actual service, and the appropriate error recovery
action changed, it would become necessary to
modify many “

TRY

” handlers scattered throughout
the program.

A better strategy is to let the implementation
determine the error recovery action.

 jjj

Modula-3 in Academia

Teaching Computer Science with Modula-3

Spencer Allain, Raytheon E-Systems
Farshad Nayeri, Critical Mass, Inc.

Many schools are considering newer languages
for teaching in various computer science courses.
Traditionally the debate has been between C, Pas-
cal, Ada, and Modula-2--with a smattering of For-
tran and Scheme to boot.

Academia has slowly begun to adopt some of the
new languages; namely those labeled as object-ori-
ented. Today it’s accepted that exposing students
to many different programming concepts will
enhance their understanding, but a college has
only a limited amount of time to impress this
knowledge upon its students.

In an ideal world, each university would have
unlimited funds, enough staff to have an expert in
each programming arena, and a body of computer
science majors composed of geniuses that would
be able to absorb all of the information about
every programming concept within the short
time-span of an undergraduate degree. The world
isn’t perfect, and compromises need to be made.
The first and foremost tends to be:

What do we wish to use as our core programming
language to convey the most information success-
fully to the majority of the students?

Some universities are fortunate enough to have
the funding and the personnel to be able to sup-
port two or more core languages, but many sim-
ply do not and must make the difficult decision of
selecting only one all-purpose language. Even the
universities that must choose two languages, still
have a difficult decision ahead of them and should
not make their decisions lightly, as two poor lan-
guages may produce worse results than one good
language.

There are a plethora of languages available, and
many are quite good for teaching purposes, but
what defines an excellent language for learning?

There are many criteria, and they must be tailored
to the goals of each individual university. For
instance, colleges that emphasize training stu-
dents well in the languages that appear most
often in the want-ads clearly have different objec-
tives than the colleges that focus upon program-
ming theory and utilize the languages that
facilitate this learning in lieu of market demands.
For universities that are driven by industry
demand only, the choice of programming lan-
guages is clear--teach the languages listed in the
majority of the job offerings: Visual Basic, C or
C++. It is the universities with impeccable reputa-
tions that have the luxury of being in the second
category; students are drawn in by prestige, not

With the debut of the English
translation of a Modula-3
textbook,

An Introduction
to Programming with
Style

, and the new release of

SRC Modula-3

, it's time for
you to consider using Modu-
la-3 for teaching.

In this article, Spencer Allain
and Farshad Nayeri describe
some of the reasons why you
may choose Modula-3, what
people who have used Modu-
la-3 for teaching have to say
about it, and where to go to
get more information about
teaching with Modula-3.

Spencer Allain is a software
engineer at Raytheon E-Sys-
tems, and a graduate student
at Geroge Washington Uni-
versity.

Farshad Nayeri, an editor of
Threads, has been a happy
user of SRC Modula-3 for a
number of years.

5

 Greg Nelson is a Member
of Research Staff at Digital
Systems Research Center.

Aside from his key role as the
editor of Systems Program-
ming with Modula-3, he has
contributed to the develop-
ment of several Modula-3
libraries and systems.

9

 threads – fall

1996

whether industry uses the same languages.

Most universities, however, fall somewhere in
between. They attempt to use the appropriate lan-
guages, but fall back upon industry standards
when decisions boil down to recruiting new stu-
dents. Finally, they are worried about the impact of
the choice of the language in the satisfactory com-
pletion of projects and the overall health of the
curriculum.

The remainder of this article targets universities
who are looking for a fresh alternative to what
they teach today, whether it is Pascal, C, or Ada.
We encourage you to read on even if you don’t fit
into this category as we think you’ll find many
issues of interest, even if you don’t end up switch-
ing to a new language.

First, some characteristics of a good teaching lan-
guage:

• It should be clear and straightforward so that the logic
of the program is easy to follow from the code.

• It should cover all major issues for which it is being
used to convey, in an integrated and coherent fashion.
Its design should allow concepts and features to be
introduced incrementally, so that novice program-
mers are not overwhelmed.

• It should facilitate the learning of high-level concepts
before requiring the student to deal with all the low-
level issues.

• It should be scalable well beyond what will be taught
in lectures, as students need room to experiment.
There is nothing harder than defending a bad choice
by the language designer to a student who is trying to
find a better way to do something.

• Experience with the language should be readily appli-
cable to skills in the professional market.

• The implementation of the language must be well-
worn, reliable, and well-documented. It must run on
modest hardware, and it should be very inexpensive
or even free.

There are many possible languages to choose
from, but there is one in particular that is strong in
all the above areas, yet under-utilized by many
schools because they have not heard about it. The
language is

Modula-3

.

What is Modula-3?

Modula-3 is a member of the Pascal/Modula family
of languages. Despite its name, Modula-3 is much
more than just another successor to Modula-2. The
language and its implementation have been stable
for the past five years; they have always boasted a
nice integration of features that have only recently
been realized in other designs, such as C++, Ada95,
and Java.

The goal of Modula-3 is to be as simple and safe as
it can be while meeting the needs of modern sys-
tems programmers. Instead of exploring new
untried features, the designers followed proven
practice. The language features that depart from

previous designs aimed at two important areas:
a simpler type system and greater robustness.

Modula-3 retains Modula-2’s module system for
the most part and most of its Pascal-like syntac-
tic style. It adds objects, exception handling, gar-
bage collection, lightweight processes (also
called threads), generics, and the ability to sepa-
rate safe and unsafe code, all in one integrated
whole.

The combination of features in Modula-3 makes
it both a wonderful systems programming lan-
guage and a great teaching language. The cen-
tral source for finding information about
Modula-3 is the Modula-3 Home Page at Digital
Systems Research Center:

http://www.research.digital.com
/SRC/modula-3/html/

Why Modula-3 for Teaching?

Modula-3 is well-suited for teaching because it
combines simplicity, power, and safety.

Since less time is spent by students and teaching
assistants chasing dangling pointers and cor-
rupted data, more time is available for learning
the important concepts.

Modula-3 avoids the complexity of legacy lan-
guages. The Modula-3 language specification is

fifty

 pages long even though Modula-3 is as pow-
erful as C++ and Ada95. However, Modula-3
does not hinder the programmer as Pascal does.
The language design is very uniform, and allows
the programmer to work at different levels of
abstraction easily.

Modula-3 can be used also for serious systems
work. For example, the University of Washing-
ton has had quite a positive experience in using
Modula-3 for building

SPIN

, their extensible
operating system, showing that Modula-3 can
easily be on or above par with C/C++ for systems
programming. In the safe subset, however, Mod-
ula-3 works well as a predictable programming
language, encouraging the programmer to con-
centrate on the problem at hand instead of
working around language limitations.

In general, as it is a lot easier to concentrate on
solving problems by writing good programs in
Modula-3, students will have the satisfaction of
completing programming projects, which will
help motivate them to excel. (See “what do peo-
ple who use Modula-3 have to say about it?”
below) Also, well-designed and well-imple-
mented Modula-3 libraries (more than 2500
modules) serve as great examples for students.

To sum up, by teaching in Modula-3, you can
easily demonstrate:

• basic programming, via a Pascal-like syntax
• modules and interfaces

fall

1996

 – threads

10

• object-oriented programming
• generics
• multi-threading, concurrency and operating systems

issues
• graphical user interfaces
• data structure and algorithm via animation
• distributed and persistent programming concepts

To get a better idea of the academic experience
with Modula-3, please see the quotes from an
informal survey at the end of this article.

Addressing Practical Concerns

SRC Modula-3, a freely-available Modula-3 imple-
mentation, comes with a large standard library
(libm3) providing:

• Text manipulation (automatic garbage collection
allows for a real concatenation operator.)

• Generic containers: lists, sequences, tables, sorted
lists, sorted tables

• Atoms and symbolic expressions (Lisp-like lists)
• An extensible stream I/O system
• Type-safe binary object transcription (persistent

objects)
• Operating system interfaces
• Portable interfaces to the language runtime

All standard libraries are thread-friendly and Mod-
ula-3 can readily link with existing C libraries.
They come with extensive interface documenta-
tion, and equal in quality some of the best com-
mercial tools.

There is also a very large array of stable and well-
documented libraries available. Some features are:

• Trestle, a complete multi-threaded user interface
layer abstracting differences between Win32 and X

• Network Objects, state-of-the-art distributed object
system featuring pure object remote procedure calls
and streams

• An extensive algorithm animation system that is
used by various universities for teaching data struc-
tures and algorithm courses

• Programming and documentation tools
• A custom HTTP server that lets students easily

browse the entire Modula-3 library via a web browser

Ports of SRC Modula-3 are available for Win-
dows95/NT, DOS, and just about every flavor of
Unix from OSF/1 and AIX to Linux and FreeBSD.
There is also a port to OS/2 that is nearing comple-
tion. SRC Modula-3 supports fifteen architectures
and twenty-five operating systems in all, and the
list continues to grow. Most notably, the ports of
the language on popular Intel operating systems
such as Windows and Linux take advantage of a
fast native compiler which compiles Modula-3
files in “Turbo-Pascal” speeds.

When programming in Modula-3, you can easily
expect to move your code from one platform to

another without a single change in your program
sources, giving you much more freedom in setting
up your academic computing environment.

And best of all it’s

free

!

What Are Some Universities That
Already Use Modula-3?

Here are some universities who use Modula-3 in
their curriculum:

• State University of New York at Stony Brook, USA
CS-I (CSE-114) and CS-II (CSE-214).

• University of Cambridge, UK
A Modula-3 specific course.
Modula-3 as well as ML is used in teaching introduc-
tory courses.

• Ecole Polytechnique de Montreal, Canada
Graduate course on Algorithms for CAD
Undergraduate course on OO programming

• Lehrstuhl fuer Informatik III, Germany
graduate course in software development

• Royal Institute of Technology, Sweden
the second course in computer science

• University Klagenfurt, Austria
SW-1 Programming
SW-2 Algorithms and Data Structures

• University of Manchester, UK
Third year undergraduate and masters students

• University of Waterloo, Ontario, Canada
CS246, Software Abstraction and Specification
CS241, Foundations of Sequential Programming
CS340, Data Structures and Algorithms

• University of Massachusetts, USA
graduate and advanced undergraduate projects
a target language for a compiler course

• Vassar College, USA
CS-123, Computer Science II
CS-235, Programming Languages

Textbooks and Reference Material

• Laszlo Boeszoermenyi, Carsten Weich,

Prgramming
with Modula-3, An introduction to Programming with
Style

, Springer Verlag, German edition: ISBN 3-540-
57911-7. English translation is now available from
Springer Verlag: ISBN 3-540-57912-5.

• Samuel P. Harbison,

Modula-3

, Prentice Hall, ISBN 0-
13-596396-6, 1992.

• Joseph Bergin,

Object-Oriented Data Structures in Mod-
ula-3

 . A draft of a data structures text in Modula-3 for
a second course in Computer Science. For more infor-
mation, contact berginf@pacevm.dac.pace.edu

• Robert Sedgewick,

Algorithms in Modula-3

. Addison-
Wesley, ISBN 0-201-53351-0, L.C. QA76.73.M63S43,
1993.

• Greg Nelson (editor), System Programming with
Modula-3, Prentice Hall Series in Innovative Technol-
ogy, ISBN 0-13-590464-1, L.C. QA76.66.S87, 1991.

11

 threads – fall

1996

What Do People Who Use Modula-3
Have to Say About It?

Recently we performed an informal survey of aca-
demic sites who have used and are using Modula-
3 for their teaching. Below are some extracts that
reflect what the professors had to say about their
experiences:

“It is a very good language in many ways, very
complete, clear, and fairly straightforward com-
pared with say, C++ or Ada. [...] We used to use Ada,
but it was slow (at the time), expensive (at the
time), and more complex syntactically. [...] The
advantages of Modula-3 are: the clarity and clean-
ness of the language, the similarity to Pascal, and
the decent reference books. It would take a very
persuasive argument to switch away from Mod-
ula-3”

“Last year we had a programming project course
where we recommended the students to use Mod-
ula-3, but some project groups chose to use C++ or
Borland Pascal. Most of the groups using Modula-3
did complete the course in time, while many of
the others did not:

Modula-3: 85% on-time (22 of 26)
Borland Pascal:67% on-time (2 of 3)
C++: 00% on-time (0 of 4)

We found the top advantages of Modula-3 to be:
its similarity to but without the shortcomings of
Pascal, its support for modularization, garbage
collection and the standard library.”

“Very good. The students adapt to the language
very quickly. The top advantages of Modula-3 are
that it is a sound and safe language, and can be
used for the whole curriculum.”

“We have selected Modula-3 in a long process in a
group of about ten people consisting of two pro-
fessors and six to eight assistants. We had a cata-
logue of criteria and we have considered, in the
last selection phase, the following languages:
Modula-3, Oberon-2, Eiffel, Ada, C++, Turbo Pascal.
We made two different kind of evaluations, Mod-
ula-3 won both. Top three advantages were:

• unusually clean definition of structured constructs
• object-orientation and nice concept of subtyping
• threads.”

“It’s certainly the best of the imperative languages
that I have used. It’s more general and more uni-
form than Pascal, and vastly more so than C. It’s
easy to give clean and consistent explanations of
what’s happening. The top advantages are: clean
and consistent syntax and semantics, excellent
support for modules and abstract data types, and
type safety.”

“Top three advantages of Modula-3 are:

• Coverage: exceptions, objects, concurrency, large-
scale programming are all there in an integrated,

coherent form. Having learned Modula-3 the stu-
dents should be able to learn and use almost any
other imperative language in a disciplined way

• Clarity: the language encourages good style
• Completeness: the libraries.”

“As far as project courses are concerned, I would
say that Modula-3 is more or less perfect. The
main reasons speaking for Modula-3 are: - The lan-
guage is very easy to learn. Whatever language(s)
the participants have learned before, they get
acquainted very quick. Even more advanced fea-
tures like genericity, exception handling, or con-
currency are easy to introduce. Modula-3’s
compactness allows learners to focus on the con-
cepts instead of language features. - Modula-3 is a
modern language. It proved to be a sound basis for
the discussion of general programming concepts. -
The language supports modularization instead of
data types/classes as its main decomposition/
structuring scheme. With respect to teaching
design and cooperative work (which is what the
oject course is all about), this is probably Modula-
3’s most valuable feature (compared to C++ or
Eiffel). - Last but not least, SRC’s compiler & librar-
ies are exceptionally stable and powerful. What-
ever the concrete topic of the course is, the
Modula-3 system provides very good support. [...]”

“We will not consider switching away from Mod-
ula-3 in the near future. For the project as well as
for the introductory course, the principle is
always concepts first, language second. For the
time being, I am convinced that no other language
provides a comparable ratio of features and con-
ceptual clarity.”

“We used to work with Modula-2 and C++ in the
project course before we switched to Modula-3
two years ago. Since then, we started to get real,
usable results (much to the satisfaction of the par-
ticipants).”

“[Our experience with Modula-3 has been] gener-
ally positive; covers all aspects of imperative pro-
gramming that we wish to cover; many students,
however, might vote for C++, though this is not a
big issue.”

“[Students] want to learn the latest buzz language
(eg, C++). Students are required to have some pro-
gramming experience before taking CS-I. Many
had Pascal or C. Since Modula-3 is somewhat dif-
ferent (syntax and semantics), they often com-
plained it was difficult to learn. Learning a new
language is an important experience for software
engineers, so from our [CS department’s] perspec-
tive this was good.”

“The top-most advantage of the system is its clean
structure of the language, Modules and Objects
together, and the SRC compiler is good and free.”-

jjj

Much information is avail-
able about Modula-3 on the
web. Here we include some of
the top-level references:

Modula-3 Home Page

http://www.research.digital.com

 /SRC/modula-3/html/home.html

Modula-3 FAQ

http://www.vlsi.polymtl.ca/m3/

Threads:
A Modula-3 Newsletter

href=http://www.cmass.com
/threads/

Standard Library Spec.

ftp://gatekeeper.dec.com
/pub/DEC/SRC
/research-reports/SRC-113.ps.Z

A Modula-3 Bibliography

http://www.research.digital.com
/SRC/modula-3/html
/concise-bib.html

Modula-3 newsgroup

comp.lang.modula3
m3@src.dec.com

Spencer Allain's
Modula-3 Interest Page

http://mason.gmu.edu
/~sallain/html/modula3.html

fall

1996

 – threads

12

Advanced Research Topics

Link-Time Optimization for Modula-3

Mary Fernandez, AT&T Research

Modula-3’s modules and interfaces, object types,
and type inheritance provide strong support for
development of modular and reusable software
libraries. Opaque object types, the powerful result
of combining these features, guarantee that a cli-
ent module can be compiled even when the
implementation of an imported object type is
unavailable. This is often the case when object
types are implemented in libraries. For example,
the module Symbol can be compiled in the
absence of Hash’s implementation, even though
SymbolTab is derived from HashTab, a type which
is implemented in Hash. Opaque types also sup-
port upwardly compatible object libraries, (for
example, clients of a library do not have to be
recompiled when a new implementation of the
library is released).

INTERFACE Hash;
TYPE HashT = OBJECT

METHODS
lookup(key: TEXT): REFANY;
insert(key: TEXT; value: REFANY);
delete(key: TEXT)

END;
HashTab : HashT

END Hash.

MODULE Symbol;
FROM Hash IMPORT HashTab;
TYPE SymbolTab = HashTab OBJECT

level: INTEGER
OVERRIDES

insert := Insert
METHODS

enterscope();
exitscope();

END;
END Symbol.

Opaque object types clearly distinguish Modula-3
from C++. C++ reveals objects’ implementations
in their interfaces, which helps a C++ compiler
implement references to objects efficiently. How-
ever, this prohibits development of upwardly
compatible libraries. C++ users often simulate
opaque types with cumbersome programming
conventions that are not type-safe nor enforceable
by a compiler.

Opaque object types incur runtime costs, how-
ever, because they prevent the compiler from hav-
ing complete information about an object’s
implementation, such as the types and sizes of its

data and the procedure bindings of its methods.
Without access to this information, the compiler
must implement late binding, that is, generate
code that computes the missing information at
run time.

My thesis describes a software approach to imple-
menting high-level programming languages with
late binding and shows how Modula-3’s features
that require late binding can be implemented
more efficiently with an optimizing linker. Link-
time optimization eliminates the costs of opaque
types and reduces the costs of method invocations
by finalizing objects’ representations at link time.
Link-time optimization also permits inlining of
methods without compromising program modu-
larity.

Opportunities for Link-Time Optimization

(Although this article describes opportunities for
link-time optimization using the SRC Modula-3
implementation as an example, similar opportu-
nities would exist for other implementations of
Modula-3 or for other languages that support late
binding.)

Because the representation of opaque types is
incomplete at compile time, the runtime system
provides a representation of types that describes
their complete implementation. At runtime, a
type is represented by a type descriptor, which
contains the sizes and offsets of the data and
methods associated with instances of the type. For
example,

SymbolTab_TD

 denotes

SymbolTab

’s type
descriptor. The

SymbolTab

 object self is repre-
sented by its own data area, and by a pointer to its
type descriptor’s methods, which are immutable
after type initialization. These offsets and method
bindings are computed at program startup by the
Modula-3 runtime system and are stored in the
type descriptors.

The implementations of opaque typing and
method invocations incur direct and indirect
costs. Direct costs include:

• an extra “fetch-and-add” to compute the address of a
field or method and

typecode

HashTab's
private data

SymbolTab's
data typecode

HashTab's
private methods

SymbolTab's
methods

typecode

dataOffset

dataSize

methodOffset

methodSize

methods

SymbolTab_TD

SymbolTab_TD->
methodOffset

SymbolTab_TD->
dataOffset

self

Mary Fernandez is a Senior
Member of Technical Staff
at AT&T Research.

13

 threads – fall

1996

• an indirect procedure call to invoke a method.

For example, when compiling Symbol, the com-
piler knows nothing about the structure of Hash-
Tab’s private fields and methods (shaded) and
therefore, cannot compute the offsets to self’s

SymbolTab

 fields and methods, i.e., the values of

SymbolTab_TD

’s dataOffset and methodOffset
fields. So, to compute the address of self.level, the
compiler generates the following C-like code:

address_of(self) + SymbolTab_TD –> dataOffset +
offset_to(level)

.

A method invocation includes a similar address
computation followed by an indirect procedure
call. The compiler implements method invoca-
tions as indirect calls to support strong encapsula-
tion and overriding. For example, the invocation

self.lookup(key)

 in

Symbol

 is compiled into an
indirect call, because the compiler cannot access
lookup’s procedure binding in

HashTab

’s private
methods. In addition, it cannot determine if
lookup will be overridden in a subtype of

Sym-
bolTab

, and therefore have more than one proce-
dure binding at run time. Implementing method
invocations as indirect calls incurs a (necessary)
indirect cost, because it prevents inlining and spe-
cialization of methods at call sites.

Link time is the earliest time at which a program’s
entire type hierarchy is known and therefore, the
earliest time at which the attributes of type des-
riptors can be computed. Given a smart linker
that can compute and use this information, all
expressions involving type descriptors can be sim-
plified at link time. For example, the expression

SymbolTab_TD->dataOffset + offset_to(level)

 is
reducible to a constant at link time. A smart linker
can also identify those methods bound to a single
procedure and can convert their invocations to
direct procedure calls.

It is important to note that the code generated to
implement these features produces idiomatic
expressions in the intermediate code. Although
the contents of the idioms (e.g., the values of con-
stants) may vary across targets, the idioms them-
selves are target-independent and are easily
identified given simple information, such as the
types of variables, in the intermediate code.

mld

: A Retargetable, Optimizing Linker

The system I built to evaluate link-time optimiza-
tion includes:

mill

, a machine-independent linker
format suitable for link-time optimization and
code generation;

mlcc

, a C-to-mill compiler; and

mld

, a

mill

 linker. mlcc and mld are based on lcc, a
retargetable ANSI C compiler and were built by
dividing lcc at the interface between its front and
back ends. mlcc includes lcc’s front end and a new
code generator that emits mill code instead of tar-
get-dependent object code.

The mill code for a module is a compact binary
code that contains call graphs, flow graphs, sym-

bol and type information, and trees of lcc’s inter-
mediate instructions that are the executable code.
Linking lcc’s intermediate code instead of
machine-object code simplifies optimization. Rec-
ognizing and simplifying idiomatic expressions in
object code is difficult, especially on architectures
where instructions are reordered by instruction
schedulers.

mld performs the functions of a traditional linker,
but it processes mill code instead of object code.
Unlike traditional linkers, mld applies optimiza-
tions before it generates code for a complete exe-
cutable program. Delayed code generation
increases link time, but mld compenstates by
using variants of lcc’s fast code generators that
emit binary instructions.

Optimizers often use program representations
that preserve the source language’s semantics.
The whole program optimizier, for example,
transforms an annotated abstract-syntax tree. We
chose a low-level representation because it
allowed us to determine whether useful link-time
optimizations can be applied to a low-level code
(they can) and to measure the costs of delaying
code generation until link time (they’re tolerable).
For example, mill files are only 2.5 times larger
than unstripped object files generated from the
same source, whereas persistent AST representa-
tions are usually more than 5 times the source
size. Delayed code generation means link time is
proportional to the number of instructions gener-
ated, but mld’s fast code generators help. For
example, mld links and emits a large executable
with a 1 MB text segment in about fifty seconds on
a DEC 5000/240.

To apply link-time optimizations to Modula-3 pro-
grams, we use the v2.11 Modula-3 compiler, m3.
m3 invokes mlcc, which produces mill files for
application modules and for the complete Mod-
ula-3 runtime system. At link time, m3 invokes
mld.

mld

’s Optimizations

mld

 implements late binding using data-driven
simplification, which simplifies expressions that
refer to variables whose values are constant after
linking. mld obtains the bindings between vari-
ables and their link-time values from a binding
file, which contains assignments of values to glo-
bal symbols.

For a Modula-3 program, mld executes an initial-
ization procedure similar to the one executed by
the Modula-3 runtime system at program startup,
but instead of initializing the type hierarchy in
memory, it creates a binding file that describes the
initialized type hierarchy. For example, part of the
link-time binding data for

SymbolTab_TD

 includes:

*SymbolTab_TD = {
typecode = 6;

fall

1996

 – threads

14

dataOffset = 408;
methodOffset= 24;
parent = HashTab_TD;
*methods = [

4: Hash__Lookup;
8: Symbol__Insert;
12: Hash__Delete;
16: Symbol__Enter;
20: Symbol__Exit;

];

After creating the binding file, mld traverses mill
instruction trees, identifies expressions that refer
to link-time constants, and simplifies them. mld’s
expression matcher and simplifier are generated
automatically by lburg from concise rules that
map mill idioms into simpler mill expressions.
Some rules eliminate the fetch-and-add cost of
accessing fields and methods; others convert invo-
cations of singly-bound methods to direct proce-
dure calls. mld also applies cross-module inlining
of frequently executed methods and procedures.

Binding files are not restricted to type informa-
tion nor are they dependent on Modula-3. Any
write-once data is permissible, such as an array
after initialization. mld can use binding informa-
tion to optimize any mill program, and its expres-
sion simplifier has few dependencies on Modula-
3.

Results

mld’s optimizations are intended for programs
that use objects heavily. When applied to six large
Modula-3 programs, data-driven simplification
reduces total instructions executed by 3-11% and
total loads executed by 4-25%. It converts an aver-
age 28% of dynamic method invocations to direct
calls. These changes result in elapsed-time
improvements up to 25%. As expected, programs
that use objects most, benefit most. None of our
benchmarks use objects heavily, however, so we
would expect greater improvements for programs
written primarily in an object-oriented style.
Link-time code generation dominates mld’s exe-
cution time, but the optimizations themselves are
inexpensive: they increase link time by less than
10%.

Conclusions

mld’s optimizations do not require complex algo-
rithms, and they are inexpensive to apply. We
focus on simple techniques that use whole-pro-
gram information, which is unavailable at com-
pile time. Despite their simplicity, the techniques
are effective, even for programs that do not use
objects aggressively.

It is possible to apply similar optimizations at
compile time, but at the expense of less modular
programs and more complex program mainte-
nance. For example, an “optimistic” Modula-3
compiler could avoid the runtime overhead of

opaque types by fixing their representations using
“hints” about the sizes and structure of imported
types. Any changes to an imported type’s repre-
sentation would require recompilation of mod-
ules that import the types. Link-time
optimization is simpler, because it has complete
information, and is more flexible, because it per-
mits optimization of modules in libraries, for
which the source is often unavailable. I have
described those link-time optimizations that only
require the complete type hierarchy and that we
have implemented and measured. Other interest-
ing link-time optimizations, such as conversion of
heap-allocated to stack-allocated objects and the
safe elimination of runtime range and nil-object
checks, require intra- and inter-procedural data-
flow analysis as well as the complete type hierar-
chy. My thesis describes these link-time optimiza-
tions in detail and discusses their potential
effectiveness for Modula-3.

 jjj

S chema t i c o f m l d

mill
objects
(.m,.s)

binder optimizer

Intermediate
(.lc)

Intel486

SPARC

MIPS
code
generator

binary
Inst.
encoder

executable
(a.out)

thr
ead

s

Threads: A Modula-3 Newsletter. Issue 2.

Copyright © 1996 Critical Mass, Inc.
All Rights Reserved.

Threads

 is available via the world-wide
web at

http://www.cmass.com/threads

.

For more information contact:
Critical Mass, Inc.,
1770 Mass. Ave., Cambridge, MA 02140

telephone

+1 617 354 6277

e-mail

threads@cmass.com

web

www.cmass.com

fall

1996

 – threads

15

They can be with

2

Are your distributed applications bulletproof?

1 7 7 0 M a s s a c h u s e t t s A v e n u e
C a m b r i d g e , M A 0 2 1 4 0 U S A
w w w . c m a s s . c o m

Win NT
Win 95
Solaris
SunOS

Linux
HP/UX

SGI Irix
Digital Unix

R E A C T O R

Reactor is a
programming
environment
designed to
support the
development
of robust,
enduring, and
distributed
applications.

At the center
of Reactor is a
state-of-the-art
object-oriented
programming
language with
built-in
support for
garbage
collection,
threads and
exceptions.

The
environment
integrates a
full-featured
web browser
and an easy-to-
use builder.

Reactor also
comes with a
large array of
royalty-free
run-time
libraries for
distributed objects,
interfaces to X11 and
TCP, threads and

