™

Editors:

Farshad Nayeri,
GTE Laboratories

Geoff Wyant,
Sun Microsystems Laboratories

Lauren Schmitt,
Critical Mass, Inc.

Introducing Modula-3 Threads

We are pleased to bring you the first issue of
Threads, a newsletter for the Modula-3 com-
munity. By publishing this newsletter we hope
to establish a forum of discussion and infor-
mation sharing about Modula-3 and what vari-
ous organizations — industrial or academic —
are doing with Modula-3. We tried to make
the articles accessible to both currently active
and potential Modula-3 users. We hope to
invite those who now use other programming
languages give Modula-3 a try, too.

We welcome your ideas and contribution in
shaping the future of Threads. We imagine
that Threads will change with your input over
the next few issues. Please drop us a note at
threads@cmass.com!

What is Modula-3?

Modula-3 is a simple and modular program-
ming language, providing facilities for excep-
tion handling, concurrency, object-oriented
programming, automatic garbage collection,
and systems programming without involving

the complexities forced by other languages of |

its class. Modula-3 is both a practical imple-
mentation language for large software projects
and an excellent teaching language.

An implementation of Modula-3 is available
free of charge from Digital Systems Research
Center. For more information visit the Mod-
ula-3 home page: http://www.research.digital.-
com/SRC/modula-3/html/home.html

J¢U¢N¢O¢2

Feature Article
Implementing Juno-2: The User Interface
by Allan Heydon ..o,

How Modula-3 got its spots?
Initialization of Object Types
by Greg Nelsoncccceevviiviec e,

Photon

Modula-3 in Industry

Photon: An Environment for Building
Distributed Applications

by Lauren Schmitt..........cccoooveiiieiiiciieeie,

Programimsenen
mit Moduls- 2

i

-l,!:
|
]

= g

Modula-3 in Academia
University of Klagenfurt, Austria
by Laszlo Boeszoermenyi.........cocceeveevveesnneene,

Coarience
Advanced Research Topics

The Whole Program Optimizer
by Amer Diwan.........ccccccvevveeiie v

Feature Article
Implementing Juno-2:
The User Interface

Allan Heydon, heydon@pa.dec.com
Digital System Research Center

This is the first of a series of articles that
describe how Greg Nelson and | used the
Modula-3 programming language to imple-
ment a constraint-based drawing editor called
Juno-2. The articles are meant to show how
Modula-3 and the rich collection of libraries
included with src Modula-3 have been used
in a sophisticated application program.

In this article, I'll describe how we used the
Formsvbt, vbtkit, and Trestle libraries to
implement Juno-2's graphical user interface.

Overview of Juno-2

Juno-2 is a constraint-based drawing editor
intended for the production of precise techni-
cal drawings. The main goal of the project was
to build a usable constraint-based drawing
editor with an extensible constraint definition
language. We hoped to build a system to pro-
totype constraint-based interfaces for several
different domains from within the application
itself.

Constraints allow you to specify locations in
your drawing declaratively, rather than com-
puting them imperatively. For example, to
draw an equilateral triangle, you first draw an
arbitrary triangle and then constrain its sides
to have equal length; Juno-2 will adjust the
vertices to make the triangle equilateral.
Moreover, the constraints are maintained
whenever part of the picture is changed, so
constraints make it easier to cope with modifi-
cations.

Most drawing editors like MacDraw allow you
to align objects in various ways, but those
alignments are only temporary. By contrast,
alignments based on Juno-2 constraints are
permanent. This means that alignment is
maintained even if an object is moved. Fur-
thermore, constraints can be used to maintain
symmetry.

Juno-2 is a double-view editor: it has a graph-
ics view that displays a view of the picture as it
would appear if printed, and a text view that

displays a program in the Juno-2 programming
language that corresponds to the picture.
Editing either view causes the other view to be
updated. We use software double-buffering to
make dragging in the graphics view appear
smooth. Our implementation of a re-usable
software double-buffering object will be the
subject of a future article.

Juno-2 is written entirely in Modula-3. It is
about 26,000 lines of Modula-3 code, plus
about 600 lines of Formsvbt form code to
describe the user interface (see below) and
6,000 lines of embedded Juno-2 code. Cur-
rently, the system is not publicly available, but
we hope to make the binaries available soon
for various architectures.

Implementing the Juno-2 User Interface

The Juno-2 user interface is built on top of
Trestle, Modula-3's object-oriented window
system toolkit. The version of Trestle included
with src Modula-3 runs on the X window sys-
tem; an implementation for Windows/nt and
Windows/95 is in progress.

The basic Trestle abstraction is an object
called a “virtual bitmap terminal”, or vbt. Each
vbt represents a share of the keyboard, mouse,
and displays. vbts are comparable to the win-
dows and widgets of other window systems.

A Trestle application’s user interface is struc-
tured as a tree of vbts. The vbt at the root cor-
responds to the top-level application window,
and the vbts at the leaves generally corre-
spond to the actual regions on the screen
where painting occurs. The internal nodes of
the tree are called split vbts. They divide their
region of the screen between one or more chil-
dren depending on the class of the split.

It is quite possible to build a user interface
entirely out of Trestle vbts, but then the tree
of vbts must be constructed explicitly in Mod-
ula-3 code. Since the design of a user inter-
face is often an iterative process, recompiling
and relinking the application after each
change to the user interface is tedious.

The FormsVBT library was designed to address
this problem. The library provides procedures
that read a declarative user-interface descrip-
tion called a form and construct the corre-
sponding tree of vbts. Since the form file is
interpreted at run-time, the turnaround time

Allan Heydon is a Member of
Research Staff at Digital Sys-
tems Research Center. He is
currently one of two people
responsible for the mainte-
nance of SRC Modula-3.

One of Allan’s areas of research
is in constraint-based drawing
with Juno-2 as explored in this
series of articles. For more
information, see the Juno-2
home page on the web:
http://www.research.digital.-
com/SRC/juno-2

/////

aHOR b AND
aHOR e AND

YR
TI-:l

fall 1995 — threads 2

Figure 1
The Juno-2 User Interface

between changes to the user interface is sig-
nificantly reduced. Moreover, src Modula-3
includes an application called formsedit that
allows users to edit forms and immediately see
how those forms will appear and behave when
incorporated into a Modula-3 application.
This separates the task of designing the
appearance of the user interface from that of
implementing its functionality.

The Formsvbt library is built on top of a
library called VBTkit, which defines many vbt
classes, all with a uniform 3D “look and feel.”
These include the standard buttons, menus,
file browsers, and text editors of most window-
ing toolkits. But vbtkit also includes features
like buttons and menu items that automati-
cally pop-up sub-windows without requiring
the programmer to write any callback proce-
dures.

Figure 1 shows the Juno-2 user interface.
Across the top is a row of pull-down menus.
The left sub-window is divided into an area for
tool palettes and the main drawing window.
The right sub-window contains two text edi-
tors. The “Open Module” pop-up window con-
tains a partial list of Juno-2's predefined
modules.

[Juno-2 » | File = | Lahuls = | Rudiaptay =

Hun | Soker | Edib Unlifed.

Oraake
lirsg | e ncte [
Adust =TT
Gl m T[rme
Rel || Anim
Hor L]
Wer i H i
Cong |aar
Paea [Bezier
Sabep || arein
Hnrsym || b
= Hoass
sk Hiiragh
SeilioleWE | e
sovmavn | | | || Err—
| s i| [Line
Latsal || ume sk
Slrasghill s
Shrughtl HEETY
Straghts HLLEESN
Curvedd | st
Curved] Hrs
Curvei? || PenStmkn
R | F|uchart
| Resinn Mot
Frofxi
I&mh'yv PiLabe]
Equal | |Piloc
Ll | Az
Cobnear A3
Horer Anct
cang¢ s
Cang¥ il
Congy

FROC Sevupl) I3
PE.FekTontFace{ " Timex-Dold~);
IS SevFentSize (IS Big);

PE.Sattdthi¥)

B

HI PointTeal (Setup);

PRED BorSpeda. b, c) IS
b HIE ¢ AHD (h. &) CORG {a, ©]
(a0 LM

. WI PointTeal (Hersym)i
Yan

a =~ [-30.1063M. 2.IT5467T4),
b = (5680362, £ 3750674],
e~ (L. 7136, 2.2754674}.
d = (132 56082, 110, 7I9E),
& oo {=18.93454, 110 .T3542)
1]
b = Gematcy Ridia, ©) A
a HIR 0 KKD
HorSymib, . d) -3
Setupl)1
Bilraph. SetSndetm (3, 130
i Geaghi Hesdaa)
minraph, Modaib) ;
BiGraph . Nede{e)
Elraph, Straightlia. b}
DiGraph. Straightlib, e}
Enbesph, Corvedl(b, 4. & bl

3 threads — fall 1995

A Formsvbt form is a symbolic expression that
describes the structure and appearance of a
Trestle-based user interface. It is structured as
a list of nested components. The first element
of the list is the component type, and the
remaining arguments are either properties of

the component (name-value pairs) or nested
components for its children. For example,
here is a stripped-down version of the top-
level Juno-2 form (double semicolons begin
comment lines):

(HTile
;; left-hand side
(VBox
(HBox
;; <<left menu-bar description goes here>>
Fill)
(Bar 1)
(HBox
(Generic %toolbox)
(Bar 1)
(Generic %drawing)))
;; right-hand side
(VBox
(HBox
;; <<right menu-bar description goes here>>
Fill
(Border
(Text %currFile RightAlign
"Untitled.juno")))
(Bar 1)
(VTile

(TextEdit %currModule)
(TextEdit %currCmd))))

Each component may have a name, as speci-
fied by the %name syntax. You can use the
names to refer to other components within the
form, or to name components from Modula-3
code. For example, you attach a callback pro-
cedure to a button by giving the button a
name and invoking the FormsVBT.AttachProc
procedure to associate the named button with
a particular Modula-3 procedure.

In the above form, the symbolic expressions
for the menus have been omitted. To give you
an idea of what they're like, here’'s the sym-
bolic expression for the Juno-2 menu on the
far left, which has items named About... and
Quit.

(Menu (MenuLabel “Juno-2")
(VBox
(PopMButton (For aboutWindow)
(TextL “About...™))
(MButton (Name quit) (TextL “Quit™))

)

In this form, the component names MenuLabel
and TextL are names of user-defined macros.
Formsvbt does textual substitution of macro
occurrences by their instantiated definitions.
For example, the expression (TextL <text>) gets

replaced by the expression (Text LeftAlign
<text>), which causes the text to be left-
aligned rather than centered. Macros make it
easy to encapsulate common aspects of
appearance in a central place.

Some Formsvbt components provide func-
tionality that eliminates the need to associate
callback procedures with them. For example,
the PopMButton component in the previous
example causes the sub-window named
aboutWindow to pop up when that menu item is
selected. The form describing the sub-window
has a special kind of button called a CloseBut-
ton that causes the sub-window to disappear
when the button is pressed. In Juno-2, Close-
Buttons are used to cancel dialogues.

vbtkit (and hence, Formsvbt) includes a
wealth of components, many of which have
been used in the implementation of Juno-2.
For example, when a dialogue box is displayed,
the rest of the application becomes passive to
mouse clicks and typing. This is easily accom-
plished by wrapping the entire Juno-2 form in
a Filter component. Since Filter components
have active and passive states, it is a simple
matter to switch the filter between its active
and passive state by making Modula-3 proce-
dure calls at the appropriate times.

As another example, we wanted to display the
Juno-2 logo and a welcome message when the
program started up, since there is a short delay
while the program reads and compiles the
bundled in Juno-2 modules. This was also eas-
ily accomplished by wrapping the top-level
form in a TSplit component. A TSplit is a split
that displays exactly one of its children at a
time. Here’s an example of the top-level form:

(TSplit %tsplit (Which startupScreen)
;; Juno-2 logo
(Filter %startupScreen Passive
(Cursor “XC_watch”)
(VBox
Fill
(Pixmap “Juno2Logo.ppm”)
(Glue 10)
“Welcome to Juno-2! Initializing...”
Fill))
;; Main window
(Filter %background
;; <<main form from above goes here>>
)

This example illustrates the use of properties.
In addition to the use of the Name property, the

Which property has been associated with the
TSplit component, and the Passive and Cursor
properties have been associated with the start-
up screen Filter component.

The Which property of the TSplit specifies
which child the TSplit should display initially.
When the application has finished its initial-
ization work, it calls:

FormsVBT.PutInteger(w, “tsplit”, 1)

to switch the TSplit component in w (the top-
level window) to display child 1 (the children
of a split are numbered starting from 0).

One nice aspect of the Formsvbt design is
that properties are inherited. This makes it
easy to make fairly global changes to the
appearance of a user interface. For example,
to change the background color of the entire
form to a light grey, you could associate the
property (BgColor “LightGrey”) with the form’s
top-level component.

As mentioned before, Formsvbt includes a
stand-alone application called formsedit for
editing and testing forms. Formsedit provides
a text editor for editing a form, and a pre-
viewer for viewing the instantiation of the
form and for testing its behavior. Formsedit's
rapid turn-around makes it easy to rapidly pro-
totype different user interfaces.

Not every component in your user interface
will have a corresponding Formsvbt compo-
nent. Typically, the “guts” of an application
have application-specific vbts. In such cases,
you can use a Generic Formsvbt component in
your form, and then replace that component
by the true vbt at run-time. This technique is
used to replace the Juno-2 tool palette and
drawing view.

Conclusions

The Modula-3 distribution includes a window
toolkit called Trestle, a widget library called
vbtkit, a declarative user interface description
system called Formsvbt, and a program for
interactively constructing user interfaces
called formsedit. The vbtkit and Formsvbt
libraries, together with the formsedit interface
builder, made it easy to prototype and build
the Juno-2 user interface. vbtkit provided all
the interface components we needed.

Time (ms)
15

12

Area
0 +———+———+——+— (K pixels)
0 100 200 300 400

B Constraint solver (2429)

B Virtual machine (2857)

[Compiler (9727)

B User interface (10140)

O Predefined Juno-2 modules (5778)

fall 1995 — threads 4

Greg Nelson is a Member of
Research Staff at Digital Sys-
tems Research Center.

Aside from his key role as the
editor of Systems Programming
with Modula-3, he has con-
tributed to the development of
various Modula-3 libraries,
such as Trestle and Network
Objects.

5 threads — fall 1995

Like most modern windowing toolkits, the
Trestle and Formsvbt libraries require that
applications be structured as an initialization
routine and a collection of callback routines.
This general approach makes it difficult to
build modal dialogues, since by default, the
main window remains active when a dialogue
sub-window appears. With Formsvbt, modal
dialogues can be implemented by wrapping a
Filter component around the top-level form,
as described earlier.

Of course, with all the flexibility that Forms-
vbt provides, it's quite easy to create forms
whose corresponding vbt trees contain hun-
dreds of nodes. The Juno-2 form contains 559
Formsvbt components, which are translated
into a total of 731 vbts.

Overall, the vbtkit and Formsvbt libraries pro-
vide a robust and flexible environment for con-
structing graphical user interfaces quickly.
The structure and appearance of an interface
is described in a simple, declarative language,
and its functionality is implemented sepa-
rately by callback procedures written in Mod-
ula-3. O

How Modula-3 got its spots?
Initialization of Object Types

Greg Nelson, gnleson@src.dec.com
Digital Systems Research Center

People often ask why Modula-3 does not dis-
tinguish initialization methods. The answer is
that we have found it preferable to deal with
this issue by a convention instead of a lan-
guage feature.

The convention is to name one of the methods
of a type init; this method is responsible for
initializing a newly-allocated object of the
type. A further convention is that the init
method returns the object after initializing it.
This is convenient; for example it allows code
like this:

VAR tbl := NEW(HashTable.T).init(size := 50);
BEGIN ...

instead of like this:

VAR tbl := NEW(HashTable.T);

BEGIN tbl.init(size := 50); ...

If a default field value is provided when a type
is declared, then that field will be initialized to
that value in each newly allocated object. This
can often be used to avoid the need for a
explicit initialization method. For example, if
you want an object to represent stacks of inte-
gers of size at most ten, you could declare

TYPE
Stack = OBJECT
sp :=0;

data: ARRAY [0..9] OF INTEGER;
METHODS ... END;

The .sp field of a newly-allocated Stack will be
initialized to zero automatically. The data field
will contain arbitrary values, but these values
are irrelevant when sp is zero.

Default field values are frequently used to
avoid init methods. For example, a newly-allo-
cated MUTEX is ready to use: there is no need to
call any init method. Explicit init methods are
generally needed only for types whose initial-
ization depends on parameters supplied by the
client.

It is common for the initialization method of a
type to call the initialization method of its
supertype, as in the following example:

TYPE
A = OBJECT ... METHODS init(...): A; ... END; ...
AB = A OBJECT METHODS init(...): AB := InitAB;
... END

PROCEDURE InitAB(a: AB; ...): AB =
BEGIN
EVAL NARROW(a, A).init(...);
(* initialize extra fields *)
RETURN a
END InitAB;

Notice that the AB init method is a new
method, not an override of the A init method.
This is typical: the init method signature for a
subtype tends to be specific to that subtype.

Also notice that NARROW(a, A) views a as being
of type A; the result is to call As init method
instead of AB’s. No run-time check is required
by this NARROW. Finally, notice that EVAL is
required to discard the result returned by As
init method.

If the language were changed to distinguish
initialization methods, the compiler might call
them automatically, or it might issue an error
if an object were used without being initial-
ized. This might make the language more
robust, and is the main argument for dealing
with initialization in the language definition
instead of by convention. We rejected the
argument for several reasons.

First, it is problematic to have the compiler
call the init method automatically. For exam-
ple, in the InitAB procedure shown previously,
the arguments to the supertype init method
may be arbitrary expressions. They certainly
need not be the same as the argument list of
InitAB, or a prefix of the argument list, or any-
thing like that. Also, the call to the supertype
init method is not always first or last within
the subtype init method: it may occur in an
intermediate position.

Second, if one checked (either statically or
dynamically) that at least one init method has
been called for each allocated object before
the object is used, the resulting sense of secu-
rity would be far from complete. After all,
guaranteeing that the init method has been
called does not guarantee that it has actually
initialized every field that will be used.

Third, if careful checking is required for some
type, the implementor of the type can easily
produce it by defining a boolean field “initial-
ized” with a default value of false; setting it to
true in the initialization method, and test it in
the other methods. By hiding the field in the
private part of the implementation, the imple-
mentor can guarantee that no error in a client
program can cause the implementation to
compute with an uninitialized object. [

Modula-3 in Industry
Photon: An Environment for Building
Distributed Applications

Lauren Schmitt, Ips@cmass.com
Critical Mass, Inc.

Most people who have used Modula-3 agree
that it provides a great deal of support for
today's programming tasks. Garbage collec-
tion, thread support, exception handling, and
a complete set of robust and well-documented
libraries are among the features that make
Modula-3 quite suitable for building large-
scale robust distributed applications. Unfortu-
nately, most people who may consider using
Modula-3 in a commercial setting also agree
that, without a commercial implementation
and support for Modula-3, it is difficult if not
impossible to convince management to allow
programmers to use Modula-3.

We have taken the first step toward solving
this problem. I am pleased to announce that
we at Critical Mass, Inc. have been working
on a commercially-supported development
environment, named Photon, based on src
Modula-3. Photon integrates Modula-3 into a
familiar user interface: that of a web browser,
allowing the user to readily browse, build, and
manage large projects locally or over a net-
work.

We intend to distribute Photon for a low price
with an open license to make it easily available
to the masses. As part of our efforts, we will
also offer commercial support for Photon. We
hope Photon will be the first in a family of
Modula-3 based products distributed by Criti-
cal Mass.

A preview release of Photon will be available
before end of 1995 leading to an official
release in the first quarter of 1996. Our first
target platform for Photon is Linux; we intend
to support other platforms as the demand
requires. More information regarding Photon
will be posted on Modula-3 newsgroup and
will be available via our home page, http://
www.cmass.com. [

Lauren Schmitt is the founder
of Critical Mass, Inc. Critical
Mass will be the first commer-
cial provider of the Modula-3
language and accompanying
support. For more information
visit the Critical Mass web
page:
http://www.cmass.com/

fall 1995 — threads 6

Laszlo Boeszoermenyi and
Carsten Weich teach at Uni-
versity of Klagenfurt, Austria.

Their book, “Programming
with Modula-3: An Introduc-
tion to Programming with
Style,” ISBN 3-540-57911-7
has been published in Ger-
man. An English translation
will soon follow by Springer-
Verlag.

For more information on the
DOS port, see:
http://www.research.digital.-
com/SRC/modula-3/html/
m3pc.html.

7 threads - fall 1995

Modula-3 in Academia
University of Klagenfurt, Austria

Laszlo Boeszoermenyi
laszlo@ifi.uni-klu.ac.a

Carsten Weich
carsten@ifi.uni-klu.ac.at

University of Klagenfurt, Austria

Teaching

We first experimented with Modula-3 as a
teaching tool in 1992. In a course on com-
puter networks, students implemented a num-
ber of different networking protocols in
Modula-3. In 1993 a working group was
established to discuss a new programming lan-
guage to replace Modula-2 as the language for
the first programming course. In making this
decision, we felt that the most important cri-
teria in picking a language were: traditional
structured programming concepts, support for
object-orientation, and availability of good
compilers for both the Unix and dos environ-
ments.

In the final evaluation phase the following
programming languages were considered:
Eiffel, C++, Oberon-2, Ada, Modula-3 and
Turbo-Pascal 6.0. The winner was Modula-3.
Consequently, in 1993 we introduced Mod-
ula-3 as the first and second courses program-
ming language. Our first experiences have
been very promising.

To support the curriculum, we have written an
introductory text for programming that uses
Modula-3 for its examples. It's called Program-
ming with Modula-3: An Introduction to Pro-
gramming with Style which has appeared in
German by Springer-Verlag and is in the pro-
cess of being translated to English. The main
concern of the book is to give a clean and
comprehensive introduction to programming
for beginners of a computer science study. We
start with more traditional programming con-
cepts and move toward advanced topics such
as object-oriented programming, parallel &
concurrent programming, exception handling,
and persistent data techniques. The book also
presents a large number of complete examples
written in Modula-3.

DOS Port

At the end of 1992 we made available the first
DOS port of Modula-3. The port was made by
Klaus Preschern, as a member of the research
group of Professor Boeszoermenyi. This sys-
tem is steadily used by our students, and is
available freely for others via the Modula-3
home page.

Research

The research group of Professor. L. Boeszoer-
menyi (Karl-Heinz Eder, Andreas Stopper,
Carsten Weich) in cooperation with Professor.
J. Eder and M. Dobrovnik, are working on the
a variety of research projects related to Mod-
ula-3.

PPOST

ppost (parallel persistent object store) is an
object store implemented in Modula-3 that
keeps all data all the time in main memory of
a distributed set of computer nodes. ppost
uses two kinds of parallelism: horizontal and
vertical.

In horizontal parallelism, objects are kept in
sets (called classes), which can be distributed
“horizontally” among a number of worker
nodes. With the help of horizontal parallelism,
we can store large amounts of data in main
memory (several gigabytes and conceivably
several terabytes). Data is accessed with the
speed of internal memory.

Vertical parallelism provides persistence
(write to disk) in parallel to normal transaction
processing taking place on ppost. All modifi-
cations of data are stored in a log file by the
log processor. With the help of the log informa-
tion and the backup image of the database, a
new actual database image on the disk can be
produced by a backup node. As such, disk
management is actually parallel to normal
transaction processing and does not slow
down data processing.

Parallel and Persistent Sets

General purpose programming languages still
consider persistence and parallelism as fea-
tures of secondary importance. Such features
are usually added later with the help of some
library modules. This has the disadvantage of
the loss of type safety and optimizations of
some operations. Typically, programming lan-

guages supporting highly parallel architectures
are based on the array model (e.g. Vienna For-
tran, Modula-2*, Modula-3*) as the array
model is quite adequate for scientific comput-
ing. It is, however, inadequate for the manipu-
lation of a large amount of data required for
many information systems.

As an alternative, the set model is appropriate
to manipulate a large amount of data. It also
supports parallelism well; sets are by defini-
tion an unordered collection of data, therefore
no assumption about the order of processing
of the elements needs to be made. We lift the
restrictions on sets in Modula-3 and extend
the language to introduce typed, polymorphic
sets that may contain compatible types. This
allows us to handle a large amount of data that
maybe physically distributed over a number of
processors in a convenient way. Only a few
syntactic additions are necessary to allow
access to a powerful new feature. The imple-
mentation does not have to be heavy-weight
either; we provide several alternative imple-
mentations of a set for various uses.

Parallel OO Simulations

Simulation has always been a main research
direction of object-orientation. Most work on
parallel simulation concentrates on discrete
event simulations, which has the disadvantage
that it cannot take advantage of parallelism
inherently available in the problem easily.
With the help of Modula-3 Network Objects
we try to utilize this inherent parallelism and
provide models which preserve this parallel-
ism as much as possible. Such a model can be
more easily mapped to a true parallel architec-
ture. O

Advanced Research Topics
The Whole Program Optimizer

Amer Diwan, diwan@cs.umass.edu
University of Massachusetts at Amherst

As part of our efforts to improve the perfor-
mance of object-oriented programs, in partic-
ular, Modula-3 programs, we have developed
the Whole Program Optimizer (wpo). The
wpo optimizes multiple modules at once and
thus has more information available to it than
traditional optimizers that optimize one mod-
ule at a time. The wpo contains a number of
analyses and optimizations that take advan-
tage of the increased information. In the
remainder of this article we give examples of
the optimizations performed by the wpo, and
describes the structure of the wpo. The fol-
lowing example illustrates the kinds of optimi-
zations targeted by the wpo:

INTERFACE TU;
TYPE
Public = OBJECT METHODS f (); END;
T <: Public;
U<,
PROCEDURE foo (t: T);
END TU;
MODULE TU;
REVEAL T = Public BRANDED OBJECT
OVERRIDES
f.=TF
END;
REVEAL U = U BRANDED OBJECT
OVERRIDES
f = Uf;
END;
PROCEDURE foo (t: T) =
BEGIN
tf();
END;
BEGIN
END TU;
MODULE C;
IMPORT TU;
BEGIN
TU.foo (NEW (TU.U));
END C;

In procedure foo, the method invocation could
invoke either procedure Tf or Uf. However, if
the wpo has access to all the clients of TU (for
example, in module C) it can determine that
the concrete type of formal t can only be U and
therefore the method invocation can be
replaced with a direct call to Uf.

Amer Diwan is a graduate stu-
dent and a member of Object
Systems Laboratory at the
computer science department
of the University of Massachu-
setts at Amherst. Amer’s cur-
rent research interests are in
compiler optimizations and
language run-time systems.

For more information on his
project, see:
http://osl-www.cs.mass.edu/
"00s.

fall 1995 — threads 8

Replacing a method invocation by a direct call
speeds up the program by removing method
lookup overhead and also by enabling other
optimizations such as inlining. In this example,
this optimization required knowledge of mod-
ules other than the one being optimized.

Currently, the wpo is about 5000 lines of
Modula- 3 code. Figure 1 illustrates how the
wpo fits into a compilation framework.

Whole Program profile
Optimizer

front end

adapter \ A
Modula-3 \

»| SRC Modula-3 SRC Modula-3 generated

283?8 front end | Saved IR back end object code
Figure 1

Compilation Framework

9 threads —

fall 1995

The inputs to the wpo are a collection of code
files and an optional profile file. Each code file
contains code for a Modula-3 module or inter-
face; the code is represented as an annotated
abstract syntax tree (ast). The ast is annotated
with full type and source level information,
including source line numbers. All properties
of the source modules that may be useful for
optimizations and source-level debugging are
maintained. The Modula-3 pickle facility is
used to read and write the ast files readily. We
have modified the src Modula-3 front end to
write the typed ast to pickle files. Each node
in the ast has a gen method which generates
the stack intermediate representation (by
invoking the M3CG.T methods) which is the
input to the back end.

We have implemented a collection of analyses
and optimizations in the wpo. Currently, the
wpo removes the overhead of opaque types,
and performs cloning, “if” conversion (similar
to transformations in the Self compiler), type
analysis for heap allocated data, and interpro-
cedural concrete type inference to remove the
overhead of critical method invocations. In
addition, the wpo performs some traditional
compiler optimizations such as procedure
inlining.

An important component of the wpo is the
data-flow engine which is implemented as a
generic module and solves forward-flow data
flow problems for any domain. We use the
data-flow engine to implement use-def analy-

sis and type inference.

While the wpo is most effective when the
entire program is available to it, it can also
be used on subsets of the program. In partic-
ular, most of the time we don't optimize the
standard libraries. To reduce the memory
requirements, the wpo can be run in a mode
where it keeps only the modules it needs at
any given time in memory rather than the
entire program.

We found Modula-3 to be well-suited for
the implementation of the wpo. The object
model, opaque types, generic modules, an
excellent collection of standard libraries,
and most importantly garbage collection
have all contributed to an implementation
that is easy to understand and extend.

We also found Modula-3 programs to be
well-suited to optimizations. The small size
of the language definition simplifies the
design and implementation of optimizers.
Also, the isolation of unsafe features allows
the optimizer to be more aggressive on safe
modules since it can make stronger assump-
tions about concrete types of variables. In
unsafe languages, features such as arbitrary
type casts can violate these assumptions and
thus cannot be made by the optimizer.

We have recently started experimenting with
the wpo. Preliminary results are promising.
The analysis alone in wpo are able to con-
vert up to 50% of method invocations to
direct calls in our benchmark programs. [

Introducing Ph OtO n

http://www.cmass.com/

a distributed program-
ming environment for
Modula-3.

coming soon from

el e as

You've just written your last destructor!

